1. Let G be a finite group and p a prime number. Let P be a p-Sylow subgroup of G and denote the normalizer of P in G by $N_G(P)$.
 i) Show that $N_G(P) = N_G(N_G(P))$.
 ii) If K is a normal subgroup of G and K contains P, show that $G = KN_G(P)$.
 iii) If no proper subgroup of G is its own normalizer, show that the center of G is not trivial.

2. Up to isomorphism describe all finitely generated Abelian groups which satisfy all of the following properties: i) $G \otimes \mathbb{Q} \cong \mathbb{Q}^2$; ii) $G \otimes \mathbb{Z}/7\mathbb{Z} \cong (\mathbb{Z}/7\mathbb{Z})^3$; and iii) for any prime $p \neq 7$, $G \otimes \mathbb{Z}/p\mathbb{Z} \cong (\mathbb{Z}/p\mathbb{Z})^2$.

3. Let R be a left Artinian ring with Jacobson radical $J(R)$. If $R \neq J(R)$ show that R is a left Noetherian ring.

4. Determine if each of the following polynomials is irreducible, and justify your answer.
 i) $x^2 + 1 \in \mathbb{Q}[x]$.
 ii) $x^n + x^{n-1} + \cdots + x^2 + x + 1 \in F[x_1, \ldots, x_n]$ for F any field.
 iii) $x^4 + 1 \in F_p[x]$, p an odd prime (note that $p^2 \equiv 1 \pmod{8}$).
 iv) $x^p + x^{p-1} + \cdots + x + 1 \in F_p[x]$, p an odd prime.

5. Let R be a commutative ring with 1, and let $r_1, \ldots, r_n \in R$ satisfy $R = Rr_1 + \cdots + Rr_n$.
 If $M = \{(a_1, \ldots, a_n) \in R^n | a_1r_1 + \cdots + a_nr_n = 0\}$, show that M is a projective R module.

6. Let K be a finite Galois extension of \mathbb{Q} with $\text{Gal}(K/\mathbb{Q}) \cong A_4$. How many subfields does K contain, what are their dimensions over \mathbb{Q}, and which are Galois over \mathbb{Q}?
(1) Let G be a group with $|G| = 585$. Show that G contains a normal cyclic subgroup of prime index. Describe G up to isomorphism. Show that $Z(G) \neq e$ and has composite order.

(2) For any $n > 3$, show that each element of the symmetric group S_n is a product of permutations, each having no fixed point in $\{1, 2, \ldots, n\}$.

(3) Show that any cyclic group G with square free order ($a > 0$ and $a^2 | G |$ implies that $a = 1$) is the Galois group over \mathbb{Q} of some field extension $K \supseteq \mathbb{Q}$. (Hint: For a suitable $n > 0$, consider $x^n - 1 \in \mathbb{Q}[x]$.)

(4) Let $(\mathbb{Q}, +)$ be the rational numbers under addition.
 (a) Show that $(\mathbb{Q}, +)$ is not a finitely generated Abelian group.
 (b) Show that any finitely generated \mathbb{Z} submodule of \mathbb{Q} is free.
 (c) Determine if $(\mathbb{Q}, +)$ is a free \mathbb{Z} module.
 (d) Is $(\mathbb{Q}, +)$ a projective \mathbb{Z} module.

(5) Let $R = \mathbb{C}[x_1, \ldots, x_n]$ and let I and J be ideals of R satisfying: for all $\alpha \in \mathbb{C}^n$, $f(\alpha) = 0$ for all $f \in I$ in and only if $g(\alpha) = 0$ for all $g \in J$.
 (a) Show that $(I + J)/I$ is a nil ring.
 (b) Show that $(I + J)/I$ is a nilpotent ring. (Note that $(I + J)/I$ is an ideal of R/I.)

(6) If R is a finite ring and $x^5 = x$ for all $x \in R$, describe the structure of R.
ALGEBRA QUALIFYING EXAM

Partial credit is given for partial solutions.

1. Up to isomorphism, describe all groups of order 495.

2. Let \(x^4 - 7 \in \mathbb{F}[x] \) for \(\mathbb{F} \subseteq \mathbb{C} \). If \(\mathbb{F} \subseteq \mathbb{M} \subseteq \mathbb{C} \) and \(\mathbb{M} \) is a splitting field for \(x^4 - 7 \) over \(\mathbb{F} \), find \(\text{Gal}(\mathbb{M}/\mathbb{F}) \): when \(\mathbb{F} = \mathbb{Q} \); when \(\mathbb{F} = \mathbb{Q}[\sqrt[4]{7}] \); and when \(\mathbb{F} = \mathbb{Q}[i] \), with \(i^2 = -1 \).

3. Let \(\mathbb{M} \) be a finitely generated \(\mathbb{F}[x] \) module (\(\mathbb{F} \) a field). If every submodule of \(\mathbb{M} \) has a complement, describe the structure of \(\mathbb{M} \) in terms of \(\mathbb{F}[x] \). (Recall that a submodule \(\mathbb{H} \) of a module \(\mathbb{M} \) has a complement if there is a submodule \(\mathbb{H}' \) so that \(\mathbb{M} \cong \mathbb{H} \oplus \mathbb{H}' \); i.e. \(\mathbb{H} + \mathbb{H}' = \mathbb{M} \) and \(\mathbb{H} \cap \mathbb{H}' = \{0\} \).

4. Show that some power of \((x + y)(x^2 + y^4 - 2)\) is in the ideal of \(\mathbb{C}[x,y] \) generated by \(x^3 + y^2 \) and \(y^3 + xy \).

5. Let \(\mathbb{R} \) be a commutative Noetherian ring with no nonzero nilpotent element.

 Set \(\mathcal{A} = \{ \text{ann} I \mid I \text{ is a nonzero ideal of } \mathbb{R} \} \) and \(\mathcal{M} = \{ \text{maximal elements in } \mathcal{A} \} \). Prove that \(\mathbb{R} \) embeds in a direct sum of finitely many domains as follows:

 a) Show that the elements of \(\mathcal{M} \) are prime ideals in \(\mathbb{R} \).

 b) For \(P \neq Q \) in \(\mathcal{M} \), show \(\text{ann} Q \subseteq P \).

 c) Show that \(\mathcal{M} \) is finite (consider sums of \(\text{ann} P_i \) for \(P_i \in \mathcal{M} \)).

 d) Show that the intersection of the elements in \(\mathcal{M} \) is zero.

6. Let \(\mathbb{R} \) be a finite dimensional algebra over the field \(\mathbb{F} \). Assume that for every \(r \in \mathbb{R} \) there some \(g(x) \in \mathbb{F}[x] \), depending on \(r \), so that \(r + g(r)r^2 = 0 \). Determine the structure of \(\mathbb{R} \).
Directions: Work any 5. Partial credit in units of 1/4 is given for partial solutions.

1. Let G be a finite group, N a normal subgroup, and P a p-Sylow subgroup of N.
 a. Show that $G = N_G(P)$, $N_G(P) = \{g \in G : gPg^{-1} = P\}$ the normalizer of P in G.
 b. Let $\Phi(G)$ denote the intersection of the proper maximal subgroups of G. Show that $\Phi(G)$ is normal in G and if H is a subgroup such that $G = \Phi(G)H$ then $H = G$.
 c. Show that $\Phi(G)N_G(P) = G$ and that every p-Sylow subgroup P of $\Phi(G)$ is normal in G.

2. View the $n \times n$ matrix T over the ring of integers \mathbb{Z} as a linear transformation on \mathbb{Z}^n; that is, $T(X) = XT$, the matrix product of $X = (x_1, \ldots, x_n)$ and T. Set $\text{Im}(T) = \{T(X) : X \in \mathbb{Z}^n\}$, $\text{Ker}(T) = \{X \in \mathbb{Z}^n : T(X) = 0\}$.
 a. Show that $\mathbb{Z}^n = \text{Ker}(T) \oplus \text{Im}(T)$.
 b. What is the structure of the abelian group $\mathbb{Z}^n/\text{Im}(T)$ if $T^2 = pI_n$, p a prime and I_n the $n \times n$ identity matrix.

3. Let $\mathbb{Q} \subset F \subset \mathbb{C}$ where F is the field generated over the rationals \mathbb{Q} by all roots of unity in the field \mathbb{C} of complex numbers. Let $a_1, \ldots, a_k \in \mathbb{Q}, p_1 < \cdots < p_k$ primes, and set $M = F(a_1^{1/p_1}, \ldots, a_k^{1/p_k})$.
 a. Show that M is a Galois extension of F.
 b. Describe the Galois group of M over F.
 c. For any subfield $F \subset K \subset M$, show that $K = F(S)$ for some subset $S \subset \{a_1^{1/p_1}, \ldots, a_k^{1/p_k}\}$.

4. Let \mathbb{F}_p denote the algebraic closure of the finite field \mathbb{F}_p with p elements, p a prime, and let \mathbb{F}_{p^n} denote the subfield of \mathbb{F}_p with p^n elements.
 a. For $x \in \mathbb{F}_p$, show that $x^{p^n-1} \in \mathbb{F}_p$ if and only if $x \in \mathbb{F}_{p^n}$.
 b. Let $F(n) = \{x \in \mathbb{F}_p : x^n \in \mathbb{F}_p\}$. Show that $F(n)$ is finite and $F(pn) = F(n)$.

5. Let F denote a field, σ, τ automorphisms of F generating an abelian subgroup H of $\text{Aut}(F)$ of finite order s. The twisted polynomial ring $F_H[x, y]$ consists of all polynomial expressions $\sum_{i,j=0}^{m} f_{ij} x^i y^j$, $f_{ij} \in F$ in commuting indeterminates x, y over F subject to the usual polynomial addition and multiplication except that $xf = \sigma(f)x, yf = \tau(f)y$. Let Z denote the center of $F_H[x, y]$.
 a. Show that Z contains $F_0[x^s, y^s]$, F_0 the subfield of F fixed by H.
 b. Show that $F_H[x, y]$ is Noetherian and Z is Noetherian.

6. Let I denote an ideal in $\mathbb{C}[x_1, \ldots, x_n], \mathbb{C}$ the field of complex numbers and suppose that I is the intersection of k maximal ideals. Show that if $k < n$ then I contains a homogeneous linear polynomial $a_1x_1 + \cdots + a_nx_n$ with $a_i \neq 0$ for some $i, 1 \leq i \leq n$. Give an example to show that this can fail for $k \geq n$.

7. Let R be a finite dimensional, semisimple \mathbb{C}-algebra, \mathbb{C} the field of complex numbers, and for $r \in R - \{0\}$, let $m_r(x) \in \mathbb{C}[x]$ denote the monic polynomial of least degree such that $m_r(r) = 0$; i.e., the minimal polynomial for r. Show that R is commutative if and only if $m_r(x)$ has no multiple roots $\forall r \in R - \{0\}$, and R is noncommutative if and only if $\deg m_r(x) < \dim R/k \forall r \in R - \{0\}$.
1. Let G be a group of order 105. Show that G contains a normal subgroup of index 3 and determine how many possibilities there are for the structure of G, up to isomorphism. Show that G has a nontrivial center.

2. For a prime integer p, a group G is called p-divisible if the function $f_p: G \rightarrow G$ given by $f_p(g) = g^p$ is surjective (i.e. onto). If G is Abelian and p-divisible, show that G is finitely generated if and only if G is finite with order relatively prime to p.

3. Let $Q \subseteq M \subseteq C$ with M a finite dimensional Galois extension of Q, the rational numbers. If for all subfields $Q \subseteq L \subseteq M$, $[L:Q]$ is even, what can the order of $\text{Gal}(M/Q)$ be? In this case, show that M embeds in a radical extension of Q.

4. Let $C[x_1, x_2, \ldots, x_n] = R$ and let $f(X) = f(x_1, x_2, \ldots, x_n) \in R$ be irreducible. Given $g(X), h(X) \in R$ so that $g(\alpha) - h(\alpha) = 0$ for all $\alpha \in C^n$ satisfying $f(\alpha) = 0$, show that $g(X) + (f(X)) = h(X) + (f(X))$ in $R/(f(X))$.

5. Let R be a commutative Noetherian ring with 1. Prove that R is isomorphic to a finite direct sum of fields if and only if every (ring) homomorphic image of R is projective as an R module.

6. Let F be a finite field and let A be an F subalgebra of $M_n(F)$.
 a) If A is a domain, show that $\dim_F A \leq n$.
 b) If A is simple with $F-I_n$ as its center, show that $\sqrt{\dim_F A}$ is an integer and divides n.
Written Qualifying Exam, Algebra, Nov. 1998

Directions. Partial credit in units of 1/4 is given for partial solutions.

1. Let G be a group of order p^aq^b, p, q distinct primes and a, b positive integers. Prove that if $q < p$ and the order of q mod p exceeds b then G is solvable.

2. Let G be a finitely generated abelian group (i.e., a finitely generated \mathbb{Z}-module).
 a). Prove that G has no elements of order p, p a prime, if and only if $G \otimes_{\mathbb{Z}} \mathbb{Z}_p \cong \mathbb{Z}_p^r$, for some positive integer r, \mathbb{Z}_p is the local ring of rational numbers with denominator prime to p.
 b). Prove that G is projective if and only if there is an integer r such that $G \otimes_{\mathbb{Z}} H \cong H^r$ for all abelian groups H.

3. Let \mathbb{F}_{p^n} be a finite field with p^n elements, p a prime. Recall that the norm map $N : \mathbb{F}_{p^n} \to \mathbb{F}_p$ is defined by $N(x) = \prod_{g \in \text{Gal}_{\mathbb{F}_p^{p^n}}} g(x)$ and the trace map is defined by $T(x) = \sum_{g \in \text{Gal}_{\mathbb{F}_p^{p^n}}} g(x)$. Determine the image of each of these maps, show that the kernel of the norm map is $\{x/g(x) : x \in \mathbb{F}_{p^n}^*, g \in \text{Gal}_{\mathbb{F}_p^{p^n}} \}$ and that the kernel of the trace map is $\{x - g(x) : x \in \mathbb{F}_{p^n}^*, g \in \text{Gal}_{\mathbb{F}_p^{p^n}} \}$.

4. Let R be a subring of $\mathbb{C}[x_1, \ldots, x_n]$, containing \mathbb{C} and assume that the field of quotients of R is $\mathbb{C}(x_1, \ldots, x_n)$. Show that there are polynomials $f_1, \ldots, f_s \in \mathbb{C}[x_1, \ldots, x_n]$ such that $d\mathbb{C}[x_1, \ldots, x_n] \subset R$ if and only if $d \in I = f_1 \mathbb{C}[x_1, \ldots, x_n] + \cdots + f_s \mathbb{C}[x_1, \ldots, x_n]$. In addition, show that I cannot be a maximal ideal in $\mathbb{C}[x_1, \ldots, x_n]$.

5. Maschke's theorem implies that the group algebra $k[G]$ over a field k of characteristic zero is semisimple when G is a finite group. Using this fact,
 a). Determine the structure of $\mathbb{C}[S_3]$, S_3 the symmetric group on three symbols.
 b). An epimorphism of groups, $\phi : G \to H$, induces an epimorphism $\Phi : k[G] \to k[H]$ on the corresponding group rings over k. Prove that if k has characteristic 0 and G is finite then $k[H]$ is a ring direct summand of $k[G]$.

6. Determine the galois group of $x^n - p$ over the rationals, p a prime, and determine all subfields of its splitting field which are normal over the rational numbers.
Partial credit is given for partial solutions.

1. Let G be a group of order $1705 = 5 \cdot 11 \cdot 31$. Describe the possible structures of G up to isomorphism.

2. Let G be a group and $N < G$. Show: i) G is solvable $\iff N$ and G/N are solvable; and ii) if $|G| = p^n$ for p a prime then G is solvable.

3. Let $f(x) \in \mathbb{Q}[x]$ be irreducible with $\deg f = p$, an odd prime, and let $K \subseteq \mathbb{C}$ be a splitting field for $f(x)$ over \mathbb{Q}. Suppose that $f(x)$ has exactly two roots in $\mathbb{C} - \mathbb{R}$. Prove that $\text{Gal}(K/\mathbb{Q}) \cong S_p$.

4. Using methods of algebraic geometry show that there is a fixed $m > 0$ so that for any linear polynomial $f(x,y,z,t) = ax + by + cz + dt$, $f(x,y,z,t)^m \in (x^{19}y^{32}z^{31}, x^3 + y^3, y^3 + z^4, z^{13} + t^7) \subseteq \mathbb{C}[x,y,z,t]$.

5. Let $A = C[x, \sigma]$ be the twisted polynomial ring over \mathbb{C} where σ is complex conjugation. The elements of A are the polynomials $p(x) = c_0x^n + \cdots + c_1x + c_0$ which add in the usual way but with multiplication given by $xa = \sigma(a)x = \bar{a}x$, and extended by the associative and distributive laws. The general expression for products is $\sum a_i x^i \sum b_j x^j = \sum (\sum a_i \sigma^j(b_j)) x^k$.
 i) Find the center of A.
 ii) Is the center of A a Noetherian ring (and why)?
 iii) Show that A is a left and a right Noetherian ring.

6. Let R be a right Artinian ring so that each $r \in R$ satisfies $r^3 = r$.
 i) Show that R is a finite ring.
 ii) Show that there is some $m \geq 1$ so that R has exactly 2^m elements satisfying $x^2 = x$.
 iii) Using m in ii), find the possible values for $|R| = \text{card}(R)$.
1. For p and q distinct primes show that any group of order p^aq is solvable.

2. Let G be a finite Abelian group so that whenever H and K are subgroups of G of the same order then $H \cong K$ as groups. Describe the possible structures of G. If $|G| = 2^3 \cdot 3^3 \cdot 5^2 \cdot 7^2 \cdot 11 \cdot 13$, up to isomorphism how many possibilities are there for G?

3. Let p_1, \ldots, p_k be distinct primes in \mathbb{Z} and set $F = \mathbb{Q}(\sqrt[p_1]{1}, \ldots, \sqrt[p_k]{1}) \subseteq \mathbb{R}$.
 i) Show that F is a Galois extension of \mathbb{Q} with $\text{Gal}(F/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^k$.
 ii) Show that $F = \mathbb{Q}(\sqrt[p_1]{1} + \cdots + \sqrt[p_k]{1})$.

4. For F a field and $R = F[x_1, \ldots, x_n]$ let M be a finitely generated R module. Show that there are positive integers s and t and an exact sequence of R modules $0 \rightarrow K \rightarrow R^s \rightarrow R^t \rightarrow M \rightarrow 0$.

5. If I is a nonzero ideal of $R = \mathbb{C}[x_1, \ldots, x_n]$ which is not maximal then if R/I is a domain, show that $\dim_{\mathbb{C}} R/I$ must be infinite.

6. If $R \neq \{0\}$ is a finite ring so that each $r \in R$ satisfies the polynomial $x^t - x$, describe the possible structures of R.
Partial credit is given for partial solutions.

1. Up to isomorphism describe all groups of order 595 (5•7•17).

2. Let M be a finitely generated module over a PID R. If \(M \otimes_R M \cong M \) determine the structure of M.

3. Let \(\rho \in \mathbb{C} \) be a primitive \(p^{\text{th}} \) root of 1 for an odd prime \(p \) and set \(L = \mathbb{Q}(\rho) \).

 What is \(\text{Gal}(L/\mathbb{Q}) \)? If \(m \) is the number of different positive integer divisors of \(p - 1 \), how many fields \(F \) satisfy \(\mathbb{Q} \subseteq F \subseteq L \) and how many of these are Galois extensions of \(\mathbb{Q} \)? What are the \(\text{Gal}(F/\mathbb{Q}) \)? Show that \([L : \mathbb{R} \cap L] = 2 \). Show that \(N_{L/\mathbb{Q}}(1 - \rho^j) = \rho \) for any \(1 \leq j \leq p-1 \).

4. Let \(R \) be a commutative Noetherian ring with 1 and let \(\varphi : R[x_1, ..., x_n] \rightarrow R[x_1, ..., x_n] \) be a surjective ring homomorphism. Show that \(\varphi \) is an automorphism.

5. Let \(I \) be an ideal in \(\mathbb{C}[x_1, ..., x_n] \).

 i) Show that there is \(k > 0 \) so that \((\sqrt[1]{I})^k \subseteq I \).

 ii) Prove that if I is maximal then \(L/I^k \) is a finite dimensional \(\mathbb{C} \)-vector space for all \(k \geq 0 \).

 iii) Show that \(\mathbb{C}[x_1, ..., x_n]/I \) is finite dimensional over \(\mathbb{C} \) \(\iff \{ \alpha \in \mathbb{C}^n \mid f(\alpha) = 0, \text{ all } f \in I \} \) is finite.

6. If \(R \) is a finite ring with 1 and \(x, y \in R \) satisfy \(xy = 1 \), show that \(yx = 1 \).
(1) Describe all groups of order $3 \cdot 17 \cdot 23$ up to isomorphism.

(2) Let G be a finitely generated Abelian group so that every proper homomorphic image of G is cyclic. Prove that G is cyclic or that $|G| = p^3$ for p a prime.

(3) Let $K \subseteq \mathbb{C}$ be a splitting field over \mathbb{Q} of $x^3 - 5$. Describe $\text{Gal}(K/\mathbb{Q})$. Describe those fields $\mathbb{Q} \subseteq M \subseteq K$ with M Galois over \mathbb{Q}, and for these find $\text{Gal}(M/\mathbb{Q})$.

(4) Let \overline{F} be an algebraic closure of the field F. If $M \subseteq F[x_1, \ldots, x_n]$ is a maximal ideal, show that $V(M) = \{\alpha \in \overline{F} \times \cdots \times \overline{F} | f(\alpha) = 0$ for all $f \in M\}$ is finite and not empty.

(5) Let $M \subseteq \mathbb{Q}$ be Noetherian \mathbb{Z}-submodule. For N a \mathbb{Z}-submodule of M, show M/N is finite (as a set) $\iff M \otimes_{\mathbb{Z}} \mathbb{Q} \cong N \otimes_{\mathbb{Z}} \mathbb{Q}$.

(6) If R is a right Artinian ring and $x^3 = x$ for all $x \in R$, show: R is commutative; R is finite; and R has $2^a 3^b$ elements for some $a, b \geq 0$.