1. Use Sylow’s theorems and other results to describe, up to isomorphism, the possible structures of a group of order 1005.

2. Let R be a commutative ring with 1. Let M, N and V be R-modules.

 (a) Show if that M and N are projective, then so is $M \otimes_R N$.

 (b) Let $\text{Tr}(V) := \{\sum_i \phi_i(v_i) | \phi \in \text{Hom}_R(V,R), v_i \in V\} \subset R$. If $1 \in \text{Tr}(V)$, show that up to isomorphism R is a direct summand of V^k for some k.

3. Let F be a field and M a maximal ideal of $F[x_1, \ldots, x_n]$. Let K be an algebraic closure of F. Show that M is contained in at least 1 and in only finitely many maximal ideals of $K[x_1, \ldots, x_n]$.

4. Let F be a finite field.

 (a) Show that there are irreducible polynomials over F of every positive degree.

 (b) Show that $x^4 + 1$ is irreducible over $\mathbb{Q}[x]$ but is reducible over $\mathbb{F}_p[x]$ for every prime p (hint: show there is a root in \mathbb{F}_{p^2}).

5. Let F be a field and M a finitely generated $F[x]$-module. Show that M is artinian if and only if $\dim_F M$ is finite.

6. Let R be a right Artinian ring with with a faithful irreducible right R-module. If $x, y \in R$, set $[x, y] := xy - yx$. Show that if $[[x, y], z] = 0$ for all $x, y, z \in R$, then R has no nilpotent elements.