(1) Up to isomorphism, describe all groups of order 495.

(2) Let \(x^4 - 7 \in F[x] \) for \(F \subseteq \mathbb{C} \). If \(F \subseteq M \subseteq \mathbb{C} \) and \(M \) is a splitting field for \(x^4 - 7 \) over \(F \), find \(\text{Gal}(M/F) \) when
 (a) \(F = \mathbb{Q} \)
 (b) \(F = \mathbb{Q}[\sqrt{7}] \)
 (c) \(F = \mathbb{Q}[i] \), with \(i^2 = -1 \)

(3) Let \(M \) be a finitely generated \(F[x] \) module (\(F \) a field). If every submodule of \(M \) has a complement, describe the structure of \(M \) in terms of \(F[x] \). (Recall that a submodule \(H \) of a module \(M \) has a complement if there is a submodule \(H' \) so that \(M \cong H \oplus H' \), i.e. \(H + H' = M \) and \(H \cap H' = (0) \).

(4) Show that some power of \((x + y)(x^2 + y^4 - 2) \) is in the ideal of \(\mathbb{C}[x,y] \) generated by \(x^3 + y^2 \) and \(y^3 + xy \).

(5) Let \(R \) be a commutative Noetherian ring with no nonzero nilpotent element. Set \(A = \{ \text{ann} \ I \mid I \text{ is a nonzero ideal of } R \} \) and \(M = \{ \text{maximal elements in } A \} \). Prove that \(R \) embeds in a direct sum of finitely many domains as follows:
 (a) Show that the elements of \(M \) are prime ideals in \(R \).
 (b) For \(P \neq Q \) in \(M \), show \(\text{ann} \ Q \subseteq P \).
 (c) Show that \(M \) is finite (consider sums of \(\text{ann} \ P_i \) for \(P_i \in M \)).
 (d) Show that the intersection of the elements in \(M \) is zero.

(6) Let \(R \) be a finite dimensional algebra over the field \(F \). Assume that for every \(r \in R \), there exists \(g(x) \in F[x] \), depending on \(r \), so that \(r + g(r)r^2 = 0 \). Determine the structure of \(R \).