(1) Let G be a finite group.
 (a) If $|G| = 2^s \cdot 7$ for $0 \leq s \leq 3$, then G is solvable.
 (b) Suppose $|G| = 112$ and G is not simple. Show that G is solvable.
 (c) If $|G| = 112$, show that G is not simple. \textit{Hint:} If G were simple, show that G
 embeds into S_7, and then show that G embeds, in fact, into A_7.
(2) Suppose that a group G is the direct sum of k cyclic groups, each of prime power order. If H
 is a subgroup of G containing nontrivial subgroups H_1, \ldots, H_s, whose sum is direct, show that $s \leq k$.
(3) Let $f(x) = (x^3 - 3)(x^2 + 1) \in \mathbb{Q}[x]$. Denote by K the splitting field of $f(x)$ over \mathbb{Q},
and by G the Galois group of K over \mathbb{Q}.
 (a) Find $|G|$.
 (b) Show that G has a normal subgroup of order 2.
 (c) Show that the 3-Sylow subgroup of G is normal. \textit{Hint:} K contains all 12-th roots of unity.
 (d) Show that G has a central element of order 2.
(4) Let R be a right Noetherian ring (with 1). Prove that R has a unique maximal nilpotent ideal $P(R)$.
 Show that the polynomial ring $R[x]$ must also have a unique maximal nilpotent ideal $P(R[x])$, and that $P(R[x]) = P(R)[x]$.
(5) Let M be a maximal ideal in the polynomial ring $\mathbb{Q}[x_1, \ldots, x_n]$. Show that there are only finitely many maximal ideals in $\mathbb{C}[x_1, \ldots, x_n]$ containing M. \textit{Hint:} Show first
 that for each i there is a polynomial $f_i(y) \in \mathbb{Q}[y]$ such that $f_i(x_i) \in M$.
(6) Let G be a finite group, and $\mathbb{C}[G]$ it group algebra. Define a bijection $*: \mathbb{C}[G] \rightarrow \mathbb{C}[G]$
as follows: For $x = \sum_{g \in G} a_g g \in \mathbb{C}[G]$, set $x^* = \sum_{g \in G} \bar{a}_g g^{-1}$. One calls x symmetric
 if $x = x^*$.
 (a) Given $x, y \in \mathbb{C}[G]$, show that $(x^*)^* = x$, and $(xy)^* = y^*x^*$.
 (b) Given $x \in \mathbb{C}[G]$, show that xx^* is symmetric, and that $xx^* = 0$ if and only if
 $x = 0$.
 (c) Show that nonzero symmetric elements are not nilpotent.
 (d) Assume that $\mathbb{C}[G]$ has no nonzero nilpotent elements. Show that G is abelian.
(7) Let K be a field extension of $k = \mathbb{F}_p$ of degree n. Let σ be the automorphism of K
given by $\sigma(a) = a^p$ for $a \in K$.
 (a) Let x be an element of K such that both $x + \sigma(x)$ and $x \sigma(x)$ belong to k. Show
 that $[k(x) : k] \leq 2$. Moreover, show that $[k(x) : k] = 2$ if and only if $\sigma(x) \neq x$.
 (b) Set
 $$F = \{x \in K \mid x + \sigma(x), x \sigma(x) \in k\}$$
 Show that F is a subfield of K, and that $[F : k] \leq 2$. Moreover, show that
 $[F : k] = 2$ if and only if $2 | n$.