Of Frog Wines and Frowning Watches: Semantic Priming, Perceptual Fluency, and Brand Evaluation

APARNA A. LABROO
RAVI DHAR
NORBERT SCHWARZ*

Three experiments show that semantic primes can enhance perceptual fluency, resulting in higher liking of the perceived product. Specifically, semantic primes that cue the visual identifier of one of two products (e.g., a bottle of wine with a frog shown on the label) increase preference of the prime-compatible target over another target (e.g., a wine without a frog on the label). This is observed even when exposure to the target is limited to levels associated with perceptual encoding of the target (experiment 1). Semantic priming of constructs compatible with perceptual features of the target increases liking of the target (experiments 2 and 3), and increased liking of the target is mediated by the target's increased visual appeal (experiment 3).

Among marketers, there has been a growing trend to employ unusual visual identifiers that have little, if anything, to do with the product. For example, designer clothing is sold with the insignia of an arrow or a crocodile, and A. C. Nielsen reports that 18% (nearly one in five) of the 438 viable table wine brands introduced in the last 3 years feature an animal, from a hippo to a frog to a penguin, on the label (see http://www.winelabels.org/ for some unique labels). Sales of such “critter” wines are now more than $600 million, and according to some, “The critter craze is merely a subset of the more widespread growth of clever or outright gimmicky wine branding strategies (e.g., Sogno Uno, a 2004 vintage featuring a blend of Italian grapes and a picture of a porn star on the label)” (Walker 2006, F30). One advantage for marketers of including distinct visual identifiers in the design of their logo or label is that such features help garner consumer attention. Also, over time some of these symbols may become part of a brand’s equity. In the current research, we suggest an additional route by which such unrelated visual identifiers may confer product preference. Building on psychological research on processing fluency, we contend that liking of a product is based, in part, on the ease of processing its perceptual features, including such visual identifiers. Further, these perceptual features can be semantically cued, and semantic priming of these features enhances product preference by increasing the ease of perceptual processing of the target.1

For example, consider the case of a consumer with a young son who loves talking about Kermit the frog from the Muppets show, and the consumer is buying wine online and encounters a wine bottle that features a label with the image of a frog. Neither Kermit nor other frogs have much to do with wine, and it is unlikely that the increased accessibility of frog-related concepts in memory will influence the consumer’s interpretation of the information provided about the wine or the fluency with which the verbal description can be processed. But would this consumer, compared to another consumer who has less exposure to frogs or Kermit, prefer this wine to other wines? We contend that the increased exposure to Kermit may facilitate the visual processing of a label that features a frog, thereby increasing its aesthetic appeal. This increased appeal of the label, in

* Aparna A. Labroo (alabroo@chicagoGSB.edu) is associate professor of marketing, Graduate School of Business, University of Chicago, Chicago, IL 60637. Ravi Dhar (ravi.dhar@yale.edu) is George Rogers Clark Professor of Management and Marketing, Yale School of Management, Yale University, New Haven, CT 06511. Norbert Schwarz (nschwarz@umich.edu) is professor of marketing, Ross School of Business, and professor of psychology, University of Michigan, Ann Arbor, MI 48106. Support to the first author from the Beatrice Foods Co. Research Fund and the James M. Kilts Center for Marketing, Graduate School of Business, University of Chicago, is gratefully acknowledged.

John Deighton served as editor and Stephen Nowlis served as associate editor for this article.

Electronically published October 25, 2007

1 Different fields use the term “priming” in different ways. We follow usage in social cognition research, where priming refers to the act of exposing a stimulus that will activate some construct in memory.
turn, may increase the consumer’s preference for the “frog wine” over a wine that features a different label. In more general terms, we suggest that the semantic accessibility of constructs that match the perceptual features of the target make the target easier to process visually, thereby increasing its aesthetic appeal and liking of the target.

This article, thus, adds to the growing marketing literature on fluency effects on affective judgment (Janiszewski and Meyvis 2001; Labroo and Lee 2006; Lee 2002; Schwarz 2004). A general consensus among researchers is that numerous variables can influence ease of processing and that targets that are easy to process are liked more (Reber, Schwarz, and Winkielman 2004). That is, prior exposure to the target stimulus increases the ease of processing its perceptual (physical) features as well as the ease with which its meaning surfaces in mind; these effects are referred to as increased perceptual or conceptual fluency, respectively. For example, repeated exposure to a bottle of ketchup increases the ease with which the physical features of the bottle can be identified (perceptual fluency) and the ease with which associations to ketchup come to mind (conceptual fluency). Similarly, prior exposure to related semantic concepts increases the ease of conceptual processing of the target; for example, prior exposure to a related product, such as mayonnaise, facilitates associations to the target product ketchup (conceptual fluency; Lee and Labroo 2004).

From the literature, it is not clear whether semantic priming (i.e., exposure to concepts) can also increase perceptual fluency of the target; for instance, does prior exposure to mayonnaise also increase the ease of processing design features of the ketchup bottle, such as its visual form or color? In fact, this effect has been difficult to identify in the extant studies because most often the perceptual features of a target (e.g., color of ketchup) are also meaningfully associated with other features of the target (e.g., taste of ketchup). The present research isolates a previously unobserved effect of semantic priming on perceptual fluency by using unusual visual identifiers that are not meaningfully associated with the target. It also shows that exposure to semantic concepts that facilitate the processing of arbitrary perceptual characteristics (which are not meaningfully related to the target) results in more favorable target evaluations. This novel observation extends our understanding of fluency processes; it also implies that previously observed effects of semantic priming on processing fluency may reflect enhanced conceptual as well as perceptual fluency, in contrast to the dominant assumption in the literature.

THEORETICAL BACKGROUND

Numerous studies have now established that contextual primes and situational cues affect consumer judgment and choice by changing not only what information is accessible in memory but also how easily that information comes to mind and can be processed (Janiszewski 1993; Labroo and Lee 2006; Lee 2001; Reber, Winkielman, and Schwarz 1998; Schwarz 2004; Shapiro 1999; Shapiro, Maclnminis, and Heckler 1997). For example, Zajonc (1968) reported that mere exposure to simple stimuli, such as line drawings or nonsense words (perceptual priming), enhanced liking of those relative to other stimuli that participants had not been exposed to previously (perceptual fluency). Interestingly, in those experiments, recognition of the previously seen stimuli was no more than chance, suggesting that mere exposure increased preference for the characters by increasing the ease of perceptual (form-based) processing without affecting meaningful elaboration of the characters. That is, perceptual priming enhanced the ease with which the perceptual features of the stimulus were encoded in later exposures, and the target appeared clearer, brighter, more attractive, and eye-catching, even when it was presented at pre-cognitive levels (e.g., less than 50 milliseconds; Bornstein 1989; Zajonc 1980).

More recently, it has been suggested that the influence of all variables known to affect the aesthetic appeal of pictorial stimuli, from figure-ground contrast to symmetry and the laws of Gestalt psychology, can be traced to their impact on perceptual fluency (Reber et al. 2004). Research suggests that any variable, not just prior direct exposure to that same stimulus, that facilitates perceptual processing of a stimulus enhances liking of the stimulus, even under conditions of a single exposure to the target (Reber et al. 1998).

Conceptual Fluency and Affective Response

Processing ease can arise not only from facilitation in perceptual processing of the target (perceptual fluency), as just described, but also from ease in processing the meaning of the target (conceptual fluency; Lee and Labroo 2004; Whittlesea 1993; Winkielman and Fazendeiro 2003). For example, Whittlesea (1993) reported that liking of a target word (e.g., book) was greater when it appeared in an associated context (e.g., “The librarian reached for the book”) than not (e.g., “The neighbors gathered to talk about the book”). Similarly, Winkielman and Fazendeiro (2003) showed that liking of a visual stimulus (e.g., a picture of a lock) was higher when the stimulus was preceded by a matching word (e.g., lock) or a related word (e.g., key) than an unrelated word (e.g., snow). Lee and Labroo (2004) also reported that people who evaluated an ad for mayonnaise (vs. those who evaluated an ad for multivitamins) indicated higher liking of ketchup. They suggested that as long as a previously seen item (e.g., mayonnaise) is meaningfully related to the target (e.g., ketchup) and the two items belong to a common associative network (e.g., condiments), the prior exposure indirectly activates the target in consumers’ memory, making the meaning of the target easy to encode subsequently.

Conceptual fluency effects have been demonstrated with priming the same stimulus (perceptual priming) and with priming goal-related constructs (goal priming) or predictability manipulations (semantic priming; Labroo and Lee 2006; Lee and Labroo 2004; Whittlesea 1993; Winkielman and Fazendeiro 2003). Additionally, in the case of sequential exposure to products, when the two products are not associated meaningfully, the ease of processing the target item
is not enhanced by the previous exposure. For example, Lee and Labroo (2004) demonstrated that prior exposure to an ad for mayonnaise increased liking of ketchup but did not increase liking of an associatively unrelated filler product (an alkaline battery). That is, in the existing studies, the effect of semantic priming on liking is based on the conceptual ease of processing the target.

In summary, existing literature has demonstrated an effect of perceptual priming from repeated exposure to the same stimulus on perceptual form-based fluency and on conceptual meaning-based fluency of the target. Existing literature has also demonstrated an effect of semantic priming or prior exposure to related concepts on conceptual meaning-based fluency. An interesting question is whether semantic priming can also increase product liking by enhancing the ease of perceptual processing.

The Current Research: Semantic Priming of Perceptual Features

Past research is ambiguous on the ability of semantic primes to enhance perceptual fluency. Some authors suggest that it is unlikely that semantic priming will increase perceptual fluency, whereas other authors suggest that this is possible. On the one hand, perceptual fluency effects are known to be highly stimulus specific and sensitive to an exact perceptual match between the prime and the target (Jacoby and Dallas 1981; Mandler, Nakamura, and Van Zandt 1987). Those studies, however, employ repeated exposure to the same stimulus (perceptual priming), and it is possible that an exact match between the prime and the target is specific to perceptual priming on perceptual fluency of a target. On the other hand, repeated exposure (perceptual) priming is not the only way to increase perceptual fluency, and, as just reported, an increasing amount of data suggests that all variables that facilitate perceptual processing of the stimulus will enhance liking of the target (Reber et al. 2004; Schwarz 2004). For example, perceptual fluency is enhanced also by presentation variables such as figure-ground contrast, visual clarity, and good form (Reber et al. 2004) within a single exposure. Additionally, several studies also suggest that perception can benefit from prior semantic activation (Allport 1955; Bruner and Goodman 1947; Bruner and Minturn 1955; McDermott 1997), although it is not clear from those studies whether such a facilitation in perception will translate into increased liking. For example, Bruner and Minturn (1955) reported that participants primed with the letter B versus those who were not primed were subsequently more likely to misidentify the number 13 as B, suggesting that semantic priming might influence perception. From these mixed findings, it is therefore not clear whether semantic priming might increase perceptual fluency.

In three experiments, we test whether semantic priming will enhance perceptual fluency. In experiment 1, we investigate whether the semantic priming of a visual identifier (e.g., a frog) that has no meaningful relation with a product category (e.g., wine) will increase preference for a product that displays the visual identifier (e.g., a wine label that features a frog). We further test whether this is especially likely to occur when participants rely on perceptual processing of the target, that is, at very short exposure times. Experiments 2 and 3 provide additional tests of this phenomenon and illuminate the underlying process. Experiment 2 manipulates the extent to which the semantic primes match the specific visual characteristics of the target. Previous research indicated that perceptual fluency effects are highly stimulus specific and that features of visual primes must closely match the perceptual details of the target (Mandler et al. 1987). Experiment 2 shows that the semantic priming of perceptual features benefits from similar specificity. The influence of semantic primes is more pronounced, the more fully the primes match the perceptual characteristics of the target. Experiment 3 provides direct evidence of processing fluency as the underlying process. In combination, these experiments establish that semantic priming can affect consumers’ preferences of conceptually unrelated products by exerting an influence on perceptual fluency.

EXPERIMENT 1

Experiment 1 was designed to investigate whether the semantic (indirect) priming of visual identifiers of a product affects product preference. Participants completed a forced choice task in which they were exposed to the images of two wines simultaneously and required to choose the one they preferred. To enhance subsequent visual processing, we asked participants to visualize the word that served as a semantic prime (e.g., to imagine a frog in response to the word “frog”) prior to exposure to the wines. More important, the two target wines were presented either very briefly (16 milliseconds) or for longer durations (3 seconds).

Target exposure duration was manipulated in an effort to disengage perceptual from conceptual processing of the target. In particular, several studies report that stimulus exposures of less than 50 milliseconds are precognitive and rely more strongly on perceptual processing. For example, Seamon et al. (1984) reported that a series of abstract polygons presented five times, each for 8 milliseconds, were preferred over novel ones about 60% of the time, even though recognition accuracy was at chance level, suggesting that subliminal processing of the polygons increased perceptual fluency. Bornstein (1989) further reported that stimulus recognition associated with longer exposures of a prime may actually inhibit perceptual fluency. Those authors manipulated exposure duration of the prime and showed that brief exposures result in perceptual processing. Extending the same logic to our experiment, we reasoned that if brief exposures result in perceptual processing, then targets that are presented for brief versus longer durations will reflect perceptual processing. Further, when exposure duration of the target is brief, preference for a particular target that is image compatible with the semantic prime will correspond with ease of perceptual processing. This precognitive exposure duration renders it highly unlikely that the observed
results merely reflect demand effects or socially desirable responding.

The experiment thus employed a 2 (prime: image compatible vs. control) x 2 (target exposure: 16 milliseconds vs. 3 seconds) between-subjects design, with 12 within-subject trials of different prime-target pairs. Each trial followed a two-stage procedure. In phase 1, participants were exposed to a semantic prime (relating to a visual identifier or to a control prime) and asked to visualize the word presented to them. In phase 2, participants made a choice between two products, one of which featured the visual identifier. In all trials that a given participant was exposed to, the phase 2 exposure to the products was either at precognitive levels (16 milliseconds), associated with the physical encoding of the products (Seamon et al. 1984), or for a longer duration (3 seconds) that has been shown to enhance stimulus representation (Bornstein 1989; Lee and Labroo 2004). We expect that priming of the visual identifier will increase preference for targets that include the identifier, especially when exposure is limited to 16 milliseconds. The effect may persist with the longer exposure or may be reduced due to contrast effects or correction processes (Bornstein 1989).

Method

Stimulus Development. Twenty-four unusual wine labels with images that had no connection with wine (e.g., ship, frog, bicycle, hippo, etc.) were collected from wine-label images available on the Internet (e.g., http://www.winelabels.org/) or from actual labels that were removed from wine bottles and scanned. The images were modified and edited using Adobe Photoshop to remove any additional images that could be associated with wine or with the country of origin (e.g., “South African Shiraz” was modified to “Shiraz”). The labels were then paired based on type of grape (e.g., within a pair, if one wine was a Shiraz, the other was also a Shiraz). The labels were further matched for similarity of colors and contrasts (e.g., if one label in a pair had a light background, the other label also had a light background) and for overall appearance (e.g., if one label appeared vintage, then the other label also appeared vintage). The labels were then merged onto bottles of red or white wine using Adobe Photoshop. This resulted in 12 pairs of wines. For each pair, an additional counterbalancing pair of wines was created in which the visual identifiers were switched. For purposes of the main study, four of the 12 pairs of wines were randomly selected to be used in practice trials, and the remaining eight pairs were used as test trials. (See the appendix for sample stimuli.) All participants were exposed to the same four pairs of practice wines and then eight pairs of target wines, but the order of presentation of the four practice trials and of the eight test trials was randomized across participants.

Participants. One hundred ten University of Chicago undergraduate students, who indicated that they were native speakers of English and occasionally consumed wine, were each paid $4.00 to participate in a 15-minute experiment on consumer decision making.

Procedure. The experiment was run on computers, using MediaLab. All participants were seated at individual workstations, and the experiment comprised 12 trials. First, four practice trials were presented in random order, and then the eight test trials were presented in random order. Each trial comprised a priming phase in which participants were asked to visualize a word and a test phase in which participants were presented with images of two wine bottles and asked to indicate which one they preferred. Conditions were run to counterbalance whether a bottle appeared on the right or the left in a pair and whether the prime related to the visual identifier shown on the bottle on the right or on the left; in the control condition, the primes related to neither or both wines (e.g., a circle or grapes, respectively). The computer program ensured that across the control and experimental condition each wine was equally likely to appear on the left or right and that, in the experimental condition, each was equally likely to be chosen or not chosen as the target wine.

Participants were told that the purpose of the experiment was to investigate how visual attention affects consumer choice and that they would see images of several pairs of wines. The images of the wines would be presented for a brief duration, and their task was to indicate which of the two wines they preferred in each pair of wines. Participants were instructed to pay attention to the screen; even if the exposure to the target was very brief, they should indicate which of the two wines they thought they preferred. Also, in order to orient participants’ attention to the place where the two wines would appear on screen and to ensure that they were paying attention, participants were instructed that before each wine-choice trial they would see a filler trial in which a word would appear in the center of the computer screen. They would be asked to visualize the word and rate how easy the word was to visualize. The wine-choice trial would appear immediately after the filler-word-visualization trial.

In a between-subjects design, participants were asked first to visualize either a control word or a word (e.g., frog) that related to one of the two wines in that particular trial (one of the two target labels had the picture of a frog). This prime consisted of a single word that appeared in the center of the screen for 1 second and was preceded by a series of crosshatches (#) that were shown for 100 milliseconds. Participants indicated how easy the word was to visualize (1 = not at all easy to visualize; 7 = very easy to visualize). After that, participants were instructed that the consumer choice task was about to commence, after which they again saw a series of crosshatches for 100 milliseconds, which were replaced by a pair of wines for 16 milliseconds or for 3 seconds. Participants then indicated preference toward one of the two wines by pressing either the Z or the slash (/)
key. Once all the trials were completed, participants indicated how involving the task was (1 = did it quickly, not at all involved; 7 = paid a lot of attention, very involved), how much they liked wine (1 = not at all; 7 = very much), and how they felt at that moment (1 = bad mood; 7 = good mood). After this, as a suspicion check, participants were asked to write down what they thought the experiment was about and to provide demographic information. They were then thanked and debriefed. No participant guessed the true purpose of the study.

Results

Manipulation Checks. In order to rule out differences in overall liking of wine across different groups of subjects, a two-way ANOVA was conducted with cue (image compatible vs. control) and target exposure (16 milliseconds vs. 3 seconds) as the independent factors and liking of wine as the dependent variable. Neither the main effects nor the interaction were significant (all $F's < 1$). Further, a 2 (cue) \times 2 (exposure) ANOVA conducted on an index of the average of the two measures of involvement (alpha $= .87$) also revealed no significant effects ($F's < 1$, except exposure $F(1, 106) = 1.58, p > .20$). Also, the 2 (cue) \times 2 (exposure) ANOVA conducted on the mood measure revealed no significant effects (all $F's < 1$). Finally, for each participant, an averaged score was calculated for ease of visualization of all the priming words in the eight target trials. The ANOVA conducted on the ease of visualization measure using a prime as the independent variable revealed no differences in the ease of visualizing primes across conditions ($F < 1$); participants generally indicated that the words were easy to visualize ($M = 6.52$). That is, any observed effects are not more pronounced for those who had an easier time forming an image of the prime in phase 1, suggesting that it was not the ease of forming an image of the prime that enhanced liking of the target.

Hypothesis Testing. The eight test trials were the same for all participants (order randomized), and the only difference between the control and the experimental condition was in the words that subjects were asked to visualize prior to the choice task. Therefore, the responses of participants were coded for each trial (experimental conditions: prime irrelevant wine = 0, and prime relevant wine = 1; control conditions: Z = 0, and slash = 1) and summed across the eight test target trials. A 2 (prime) \times 2 (exposure) ANOVA was conducted on this score.

The analysis revealed a main effect of prime ($F(1, 106) = 23.01, p < .01$), showing that participants who were provided with a visualization cue that was compatible with the physical features on the label of one of the two wines chose the target wine more often ($M = 5.30$) than control participants ($M = 3.90$). Moreover, control participants chose the target wine at chance levels and about half the time (3.90 times out of eight), whereas participants exposed to a prime that matched the visual identifier chose the target wine significantly more often than chance (5.30 times out of eight; $t(69) = 8.01, p < .01$). The control condition affirms that chance choice probability is about 50% for each wine, and our critical comparison is between the two experimental conditions, given a chance (50%) choice probability of a target wine (see fig. 1).

The ANOVA further revealed a marginal effect of exposure (short $M = 5.05$ vs. long $M = 4.45$; $F(1, 106) = 3.45, p < .07$), indicating that the target wine was chosen somewhat more often when exposure duration was short rather than long. Both main effects are qualified by a marginally significant interaction between the prime and exposure ($F(1, 106) = 2.93, p < .10$). This interaction indicates that exposure to the target-relevant primes affected participants’ preference under both exposure conditions but that the effect was more pronounced under short (image-compatible cue $M = 5.76$ vs. not $M = 3.92$; $t(106) = 5.03, p < .01$) rather than long exposure (image-compatible cue $M = 4.75$ vs. not $M = 3.88$; $t(106) = 2.04, p < .01$). Exposure time did not affect participants’ preferences under control conditions ($t < 1$); however, identifier-primed participants were especially likely to choose the target wine when exposure to the target was short rather than long ($t(106) = 2.98, p < .01$). Note that this observation renders

\[^{3}\text{Three respondents in the 3-second condition guessed that there was an association between the visualization task and the choice task; however, all three respondents indicated that the purpose of the study was to resist the effects of meaningless advertising on choice (implying a reverse effect on choice). Removing those respondents did not affect the result.}\]

\[^{4}\text{Additional analysis of the control condition was also conducted. Using a lottery procedure, we randomly selected four left responses (first, second, sixth, and seventh trial) as zero and the remaining four responses as one. The analysis revealed similar results: the target wine was selected 4.08 times out of eight when target exposure was 16 milliseconds and 4.10 times out of eight when target exposure was 3 seconds.}\]

\[^{5}\text{Unfortunately, due to a programming error, the responses to the four practice trials were not recorded for any participant, and an analysis to confirm that differences did not exist at practice could not be conducted.}\]
it highly unlikely that the observed pattern merely reflects demand effects or socially desirable responding. In principle, exposure to a bottle with a visual logo may prompt respondents to think, “Oh, I just visualized this word, and isn’t this bottle cute?” If the primes functioned as a rhetorical device in this sense (McQuarrie and Mick 1996), their influence should have been more pronounced under longer exposure conditions.

Discussion

In sum, experiment 1 demonstrates that semantic priming can increase perceptual fluency. In particular, semantic priming of visual identifiers that have no meaningful relationship to the product on which they are displayed can enhance preference for the product, provided that the visual identifier is easy to process. To our knowledge, this is the first experimental demonstration of the beneficial effects of unique visual identifiers that are not meaningfully related to the nature of the product. As expected, the influence of priming a visual product identifier was most pronounced when exposure to the target product was limited to precognitive levels (16 milliseconds); it was attenuated when an exposure time of 3 seconds allowed for cognitive elaboration. The effects observed were not because of social desirability, nor did they result from different levels of mood or task involvement across conditions, and they do not reflect differences in the ease with which the primes could be visualized.

However, an important ambiguity regarding this experiment is worth noting. We manipulated the ease with which the visual identifier could be processed by exposing participants to a semantic prime, which they were to visualize. This manipulation blurs the line between semantic and visual priming because experiments by Shepard and colleagues show that seeing actual images and being asked to generate those images involve similar operations and brain areas (Podgorny and Shepard 1978; Shepard 1978). Experiments 2 and 3 will address this ambiguity by relying solely on semantic priming, without visualization instructions.

EXPERIMENT 2

Experiment 2 further investigates whether semantic priming of visual identifiers enhances the affective response toward the target product. This experiment relies solely on semantic priming, without visualization instructions. In addition, experiment 2 tests how closely a semantic prime needs to match the specific visual features of the target. Experiments that employed direct visual priming of perceptual features suggest that perceptual fluency effects require close visual matches (Mandler et al. 1987). Partial presentation of an image does not increase perceptual fluency of the target. Of interest is whether the same specificity applies to semantic primes, as described below.

In order to extend the generalizability of our findings, we changed the target product from a wine to a watch. An advantage of using watches as stimuli is that the configuration of the hands forms a distinct visual identity. Researchers in anthropomorphism (e.g., Guthrie 1993) and practitioners (e.g., see http://www.ubr.com/clocks/faq/1010.html) have suggested that setting the hands of a watch at 10:10 makes the watch appear to smile, whereas setting the hands at 8:20 makes the watch appear to frown. To manipulate the visual feature identified with the watch, a face of the watch was set either at 10:10 or at 8:20.

Pretest participants (n = 10) rated the extent to which watches set at 10:10 or 8:20 appear to smile or to frown (each rated 1 = not at all and 7 = very much, with watches presented in counterbalanced order). As expected, participants were more likely to report that a 10:10 watch appears to smile rather than frown (smiling M = 4.50 vs. frowning M = 2.20; t(9) = 4.87, p < .01) and that an 8:20 watch appears to frown rather than smile (frowning M = 5.00 vs. smiling M = 1.80; t(9) = 5.78, p < .01). Also, participants were more likely to rate a 10:10 rather than an 8:20 watch as smiling (t(9) = 6.82, p < .01) and to rate an 8:20 rather than a 10:10 watch as frowning (t(9) = 6.00, p < .01).

The specificity of the match between semantic primes and the target image (a watch set at 10:10 or at 8:20) was manipulated at two levels. First, some participants were exposed to four watch-related words (watch, clock, time, and dial), whereas others were exposed to control words (desk, door, chair, and table). If priming the product category is sufficient to facilitate the processing of a picture of a watch, participants primed with category concepts should evaluate a watch more favorably than participants primed with control words, independent of whether the hands of the watch are set to 10:10 or 8:20. Second, we crossed this manipulation with semantic primes related to smiling (smile, grin, happy, and elated) or frowning (frown, sad, gloomy, and scowl). If a partial match between the semantic prime and visual features of the target is sufficient to enhance liking, participants should like the smiling 10:10 watch more when primed with “smile” than with “frown,” whereas the reverse will hold for the frowning 8:20 watch, independent of whether the participants were exposed to watch-related primes or to control primes. In contrast, if semantic priming of perceptual as opposed to conceptual fluency is sensitive to perceptual match, then semantic priming of a partial representation of an image will not increase perceptual fluency of the target. Participants should like the smiling 10:10 watch more, only when primed with watch + smile words (vs. watch + frown words); the reverse should hold true for the frowning 8:20 watch.

Note that these perceptual match predictions differ from the more familiar assumptions of prime-congruent encoding or prime-congruent evaluation (for a review, see Higgins 1996). According to the prime-congruent encoding hypothesis, ambiguous stimuli are encoded in terms of the most accessible applicable concept. Participants who are primed with smile-related words should therefore be more likely to perceive the 10:10 watch as smiling and should evaluate it more positively. Conversely, participants who are primed with frown-related words should be more likely to see the
8:20 watch as frowning and should evaluate it more negatively. Thus, according to the prime-congruent evaluation hypothesis, participants who are primed with smile-related words should provide more positive evaluations than participants who are primed with frown-related words, independent of whether the watch is set to 10:10 or 8:20. In contrast, our perceptual fluency hypothesis predicts a positive effect of frown-related primes on the evaluation of the 8:20 watch. In sum, experiment 2 follows a 2 (category prime: control vs. category words) × 2 (identifier prime: smile vs. frown-related words) × 2 (target watch: 10:10 vs. 8:20) between-subjects design.

Method

Participants. Eighty-three University of Chicago undergraduate students (48 female, 34 male, and one unreported), all of whom indicated that they were native speakers of English, participated in the study for $2.00 compensation each. All participants completed an answer booklet that consisted of a priming phase and a test phase.

Procedure. Experimental participants first completed a word-jumble task (priming phase) and then reported their attitudes toward various consumer products including one of two target watches (10:10 vs. 8:20). The priming procedure was adapted from Srull and Wyer (1979), and participants were asked to find and circle each of eight words hidden in a word-jumble puzzle and then to write each of those words next to the jumble. Four words were either control words (desk, door, chair, and table) or category cues relating to the target (watch, clock, time, and dial). The remaining four words in the word-jumble task were designed to activate the visual identifier (smile or frown) associated with one of the two target watches (10:10 or 8:20). The four words relating to the visual characteristics of the 10:10 watch were smile, grin, happy, and elated, and the four words relating to the visual characteristics of the 8:20 watch were frown, sad, gloomy, and scowl.

Once participants had circled and listed the eight hidden words, they evaluated the jumble on two seven-point scales (1 = dislike, puts me in a bad mood; 7 = like, puts me in a good mood). Subsequently, participants proceeded to the test phase in which they evaluated a filler product (water; 1 = dislike very much; 7 = like very much) and the target product (a watch with its time set at either 10:10 or 8:20; 1 = dislike very much, unlikely to buy, puts me in a bad mood; 7 = like very much, likely to buy, puts me in a good mood) and responded to miscellaneous demographic questions.

Results

Manipulation Checks. In order to rule out differences in initial liking of the jumble, a three-way ANOVA was conducted with the category prime (control vs. watch), identifier prime (smile vs. frown), and target (10:10 vs. 8:20) as the independent factors and the liking of the jumble (1 = dislike; 7 = like) as the dependent variable. A main effect of the category prime (control $M = 4.39$ vs. watch $M = 5.02$; $F(1, 75) = 4.52$, $p < .05$) and of the perceptual prime (smile $M = 5.00$ vs. frown $M = 4.56$; $F(1, 75) = 4.11, p < .05$) and an interaction between the category prime and perceptual prime ($F(1, 75) = 4.82, p < .05$) emerged (all other F’s < 1). Importantly, the three-way interaction among the category prime, identifier prime, and target was not significant. This indicates that although participants preferred the watch jumble to the control jumble and the smile jumble to the frown jumble, these preferences were independent of the target that participants finally evaluated.

Furthermore, the three-way ANOVA investigating the effect on the self-report of mood measure that participants provided after evaluating the target watch (1 = puts me in a bad mood; 7 = puts me in a good mood) revealed only a main effect of smile versus frown words (smile $M = 5.17$ vs. frown $M = 4.10$; $F(1, 75) = 12.04$, $p < .01$). In addition, the three-way ANOVA investigating the effect on a second mood measure that participants provided after evaluating the target watch (1 = puts me in a bad mood; 7 = puts me in a good mood) revealed only a marginal effect of smile versus frown words (smile $M = 4.04$ vs. frown $M = 3.58$; $F(1, 75) = 3.47, p < .07$). Finally, the three-way ANOVA on participant’s evaluation of the filler product (water), provided prior to the target evaluation, showed no significant effects (all F’s < 1, except the perceptual identifier prime: $F(1, 75) = 1.31, p > .25$). These null effects of the manipulations on the evaluation of the filler product allow us to interpret the results of semantic priming on the target watches with more confidence.

Hypotheses Testing. An index of attitude toward the target was computed by averaging the two measures (1 = dislike, unlikely to buy; 7 = like, likely to buy) indicating liking of the target ($\alpha = .73$). A three-way ANOVA, with the category prime (control vs. watch), identifier prime (smile vs. frown), and target (10:10 vs. 8:20) as the independent factors and the attitude index as the dependent variable, was conducted. This revealed a main effect of the category prime ($F(1, 75) = 7.02, p < .01$), with participants exposed to watch-related words liking both watches more ($M = 3.48$) than participants exposed to control words did ($M = 2.82$). This main effect indicates that exposure to category primes is sufficient to enhance liking for a category exemplar, reflecting a fluency effect. In addition, a marginal effect of the identifier prime was observed ($F(1, 75) = 3.02, p < .10$), with participants exposed to smile words liking both watches somewhat more ($M = 3.33$) than participants exposed to frown words did ($M = 2.91$). Importantly, this main effect was qualified by the predicted three-way interaction ($F(1, 75) = 4.33, p < .05$), which is shown in figure 2.

Additional analysis revealed that control participants, who were primed with desk-related words, liked both target words more ($M = 4.04$) than participants exposed to smile words did ($M = 3.58$). However, this effect did not reach statistical significance ($F(1, 75) = 3.80, p = .056$).

In this and in experiment 3, including liking of the jumble as a covariate does not affect the results.
watches more after they were exposed to smile-related words ($M = 3.15$) rather than frown-related words ($M = 2.43$; $F(1,27) = 2.87$, $p = .10$, for the simple effect of the identifier prime). No other effect reached significance (all F’s < 1). This pattern is compatible with a general evaluative effect of the increased accessibility of affectively positive (smile) or negative (frown) concepts. However, the marginal significance of this effect and the fact that it was not observed on evaluations of the filler product ($F(1,75) = 1.31$, $p > .25$) suggest that it should be interpreted with some caution.

More important, the liking judgments of participants who were primed with watch-related words provide strong support for the hypothesized relevance of the perceptual match between semantic primes and visual targets. These participants liked the target watch more when the identifier primes (smile- vs. frown-related words) matched the watch’s visual features (10:10 vs. 8:20) than when they did not ($F(1,48) = 8.36$, $p < .01$, for the simple interaction of the identifier prime \times target watch). Figure 2B shows the resulting crossover interaction. No other effect reached significance (all F’s < 1).

Planned contrasts further revealed that participants liked the 10:10 watch more when they were exposed to semantic primes that fully matched the target (watch + smile primes $M = 3.97$) than when they were exposed to any other combination of primes (watch + frown primes $M = 2.96$; $t(75) = 2.39$, $p < .05$; control + smile primes $M = 3.16$; $t(75) = 1.71$, $p < .05$). These effects were replicated with the 8:20 watch. Again, the 8:20 watch was liked more when participants were exposed to semantic primes that fully matched the target (watch + frown primes $M = 3.79$) than when they were exposed to any other combination of primes (watch + smile primes $M = 3.09$; $t(75) = 1.68$, $p < .05$; control + frown primes $M = 2.21$; $t(75) = 3.12$, $p < .05$).

In short, participants liked the 10:10 watch most when they were previously exposed to the watch + smile primes ($t(75) = 8.49$, $p < .001$, for this condition vs. all other ratings of the 10:10 watch) and liked the 8:20 watch most when they were previously exposed to watch + frown primes ($t(75) = 6.99$, $p < .001$, for this condition vs. all other ratings of the 8:20 watch).

Discussion

In sum, we observed two fluency effects. First, exposing participants to category-related semantic primes (watch-related words) enhanced liking of watches relative to a control condition with unrelated semantic primes. Second, combining the category primes (watch-related words) with identifier primes that matched specific perceptual features of the target watch (smile- or frown-related words) further enhanced liking of the matching watch. These effects were obtained without visualization instructions and demonstrate that semantic primes can facilitate the processing of visual stimuli, giving rise to perceptual fluency effects. As expected (Mandler et al. 1987), these facilitation effects are more pronounced, the more fully the semantic primes match the perceptual characteristics of the target.

Note that these fluency effects are in stark contrast to predictions suggested by the knowledge accessibility literature. For example, the prime-congruent encoding hypothesis (Higgins 1996; Higgins, Rholes, and Jones 1977) holds that ambiguous stimuli are encoded in terms of the most accessible concept applicable to the stimulus, resulting in more positive judgments when positive rather than negative concepts are primed. From this perspective, smile primes should increase the likelihood that the 10:10 watch is perceived as smiling, resulting in more favorable evaluations of the “friendly” watch. Conversely, frown primes should increase the likelihood that the 8:20 watch is perceived as frowning, resulting in less (not more) favorable evaluations. Compatible with this prediction, participants evaluated either target watch somewhat more favorably when they were primed with smile- rather than frown-related words, but only in the control condition when participants were not exposed to watch-related words. In contrast, among participants primed with watch words, the logic of fluency effects holds...
that the crucial variable is the match between the prime and the target. Hence, matching prime-target combinations should result in enhanced liking (even when the primes emphasize the frowning expression of the target), whereas mismatching prime-target combinations should result in reduced liking (even when the primes emphasize the smiling expression of the target), as observed.

We therefore conclude that semantic primes can influence evaluative judgment in ways that have not been addressed in the knowledge accessibility literature: semantic primes that match visual characteristics of the target facilitate fluent processing. Fluent processing, in turn, is experienced as affectively positive (as captured by psychophysiological measures; Winkielman and Cacioppo 2001), which gives rise to more positive target evaluations (Reber et al. 2004), consistent with the extant literature on affective influences on judgment (Pham 2004; Schwarz and Clore 1996).

EXPERIMENT 3

Experiment 1 demonstrated that semantic priming of a visual identifier of a target product increases toward the product; this is especially likely to occur when exposure to the target product is limited to levels associated with perceptual processing. Experiment 2 replicated these effects and additionally demonstrated that semantic primes that relate only partially to the representation of the identifier do not increase perceptual fluency of the target. The main purpose of experiment 3 was to gather additional evidence of the underlying process.

This between-subjects experiment comprised one experimental and two control conditions. A bottle of MagicCoat pet shampoo served as the target product. In the experimental condition, participants were primed with dog-related words and the bottle of pet shampoo featured the picture of a collie on the label. Thus, these participants were exposed to semantic primes related to the visual identifier of the product, replicating a core condition of experiment 2. The two control conditions provide baseline information. In one condition, participants were exposed to the semantic primes, but the target lacked the relevant visual identifier (dog picture); in the other, the target showed the visual identifier, but participants were not exposed to the semantic primes. These manipulations thus resulted in three conditions: semantic prime + image present target, semantic prime + control target, and control prime + image present target.

Method

Participants. Fifty-two University of Chicago undergraduate students who indicated that they were native speakers of English were each paid $2.00 to participate in this study. Participants were instructed that they would be participating in two short paper-and-pencil studies, that the first study consisted of a word-jumble task, and that the second study was about consumer attitudes regarding various products.

Procedure. All participants completed an answer booklet that consisted of a priming phase and a test phase. The priming procedure was adapted from Srull and Wyer (1979) and was similar to that used in experiment 2. Participants were first asked to find and circle eight words hidden in a word-jumble puzzle and then to write each of those words next to the jumble. Four of the words were common across conditions (pet, grooming, bottle, and label). The remaining four words were either image compatible (dog, collie, puppy, and woof) or image conflicting (cat, feline, kitten, and meow). Once participants had circled and listed the eight hidden words, they evaluated the jumble on four seven-point scales (1 = dislike, negative, puts me in a bad mood, difficult; 7 = like, positive, puts me in a good mood, easy). They also indicated how they processed the jumble (1 = did it quickly, not at all involved; 7 = paid a lot of attention, very involved) and how they felt at that moment (1 = depressed, bad mood; 7 = uplifted, good mood).

Subsequently, participants completed the test phase of the experiment in which they were presented with pictures of different consumer products and asked to evaluate each product. Each participant first evaluated a filler product (alkaline batteries; 1 = dislike very much, very unfavorable, ineffective, not likely to buy; 7 = like very much, very favorable, effective, very likely to buy). They also completed questions designed to measure the perceptual ease (1 = not at all attractive, not at all eye-catching; 7 = very attractive, very eye-catching) of processing the filler and the subjective ease of processing the filler product (1 = difficult to process; 7 = easy to process). After this, each participant evaluated MagicCoat pet shampoo.

In the experimental condition and in the control prime condition, the image and bottle of MagicCoat pet shampoo consisted of the picture of a collie. In the control target condition, the image and bottle of MagicCoat pet shampoo were identical, except that the image of the collie was blanked out (using Adobe Photoshop). Participants indicated their attitude toward the pet shampoo (1 = dislike very much, very unfavorable, ineffective, not likely to buy; 7 = like very much, very favorable, effective, very likely to buy) and then completed questions designed to measure the perceptual ease of processing the target (1 = not at all attractive, not at all eye-catching; 7 = very attractive, very eye-catching) and the subjective ease of processing the target (1 = difficult to process; 7 = easy to process). After this, participants responded to miscellaneous demographic questions and were then debriefed.

Results and Discussion

Manipulation Checks. In order to rule out differences in the initial liking of the jumble, a one-way ANOVA was conducted with a condition (dog prime + dog target, dog prime + control target, and control prime + dog target) as the independent factor and an index of the average of the four measures of liking of the jumble ($\alpha = .84$) as the dependent variable. The main effect was not significant (dog
prime + dog target $M = 4.86$ vs. dog prime + control target $M = 4.36$ vs. control prime + dog target $M = 5.10$; $F(2, 49) = 1.62, p > .20$. A one-way ANOVA conducted on an index of the average of the two measures of processing of the jumble ($\alpha = .70$) also revealed no significant main effect (dog prime + dog target $M = 2.53$ vs. dog prime + control target $M = 3.08$ vs. control prime + dog target $M = 3.16$; $F(2, 49) = 1.16, p > .30$). Also, a one-way ANOVA conducted on an index of the average of the two mood measures ($\alpha = .91$) revealed no main effect (dog prime + dog target $M = 4.63$ vs. dog prime + control target $M = 4.55$ vs. control prime + dog target $M = 4.66$; $F < 1$), suggesting that the jumble did not affect mood differently across conditions.

In addition, a one-way ANOVA on the average of the four measures reflecting a participant’s evaluation of the filler product (alkaline batteries; $\alpha = .80$) showed no significant effects (dog prime + dog target $M = 3.46$ vs. dog prime + control target $M = 3.86$ vs. control prime + dog target $M = 4.03$; $F(2, 49) = 1.49, p > .20$). The two-way ANOVA on an index of the average of the three measures reflecting participant’s ease of processing the filler product ($\alpha = .86$) also showed no significant effects (dog prime + dog target $M = 4.08$ vs. dog prime + control target $M = 3.92$ vs. control prime + dog target $M = 4.40$; $F < 1$). These null effects of the manipulations on the evaluation of the filler product allow us to interpret the results of semantic priming on the target shampoo with more confidence.

Hypotheses Testing. An index of attitude toward the target was computed by averaging the four measures indicating liking of the target (1 = dislike very much, very unfavorable, ineffective, not likely to buy; 7 = like very much, very favorable, effective, very likely to buy; $\alpha = .82$). A one-way ANOVA conducted on this attitude index revealed the predicted main effect of condition ($F(2, 49) = 5.56$, $p < .01$) shown in figure 3. Planned contrasts indicated, as expected, that participants who were exposed to image-consistent semantic primes (dog-related words) liked the product more when its label featured the image of a dog ($M = 3.90$ than when it featured no image ($M = 3.08$; $t(49) = 2.62, p < .01$), reflecting a fluency effect. In addition, participants liked the image-present target more after they were exposed to image-compatible (dog) rather than control (cat) primes ($M = 2.91; t(49) = 3.06, p < .01$).

Ease of Processing. A fluency index was computed by averaging the three measures (1 = not at all attractive, not at all eye-catching, difficult to process; 7 = very attractive, very eye-catching, easy to process) of the subjective ease of processing the target ($\alpha = .70$). A one-way ANOVA conducted on this fluency index revealed the predicted main effect of condition ($F(2, 49) = 3.62, p < .05$). Planned contrasts indicated, as expected, that participants who were exposed to image-consistent semantic primes (dog-related words) found it easier to process the target when its label included the image of a dog ($M = 4.13$) than when it did not ($M = 3.05$; $t(49) = 2.62, p < .01$). In addition, as expected, ease of processing the image target was higher when participants were provided with image-compatible versus control primes ($M = 3.56; t(49) = 1.81, p < .05$).

To further examine the semantic priming effect on evaluation, mediation analyses were conducted (Baron and Kenny 1986). The two control conditions were coded as 1, and the experimental condition was coded as 2. First, the result of a regression analysis showed that the hypothesized effect of condition on brand attitude was significant ($b = .45, t(50) = 3.32, p < .01$). A second regression analysis showed that the effect of condition on participants’ processing fluency was also significant ($b = .46, t(50) = 2.62, p < .01$), as was the effect of processing fluency on brand attitude ($b = .43, t(50) = 4.60, p < .01$). A final regression analysis with processing fluency included in the model as a predictor of brand attitude showed that the effect of processing fluency was significant ($b = .35, t(50) = 3.71, p < .01$), whereas the effect of the condition reduced in significance ($b = .27, t(50) = 2.20, p = .04$). The result of a Sobel test showed that the mediating effect of processing fluency on brand attitude was significant ($z = 2.12, p < .05$). In sum, experiment 3 shows that semantic priming of visual features of a product enhances liking of that product and that the enhanced liking results from an increased ease of processing of the product’s perceptual features.

GENERAL DISCUSSION

The present research addressed a previously unexplored variable that facilitates fluent perceptual processing, namely, the semantic priming of perceptual features of a target. Earlier research showed that semantic primes can facilitate the processing of conceptually related visual stimuli. For example, Winkielman and Fazendeiro (2003) observed that
exposure to the word “key” facilitated processing of a picture of a lock, resulting in more favorable evaluations of the lock. Similarly, we observed in experiment 2 that exposure to category primes (watch-related words) increased liking of a category exemplar (a watch). In these cases, the semantic primes and the visual targets are part of a network of meaningful associations in memory.

Going beyond these observations, the present studies highlight that visual features that have no preexisting meaningful association with the target product (e.g., a frog on a wine label) can enhance liking of the product, provided that they are easy to process. Our studies provide the first evidence that matching semantic primes can facilitate the fluent processing of such arbitrary perceptual features (experiments 1–3). Because fluent processing is experienced as positive (Lee and Labroo 2004; Winkielman and Cacioppo 2001; Winkielman et al. 2003), fluently processed stimuli appear as more attractive and pleasing (Reber et al. 2004), resulting in enhanced liking of a product that displays the respective visual features. Thus, our experiments demonstrate that the prime and the target need not be meaningfully related if the prime matches the perceptual features of the target, in contrast to studies on conceptual fluency that suggest that the semantic prime and target must belong to a common associative network in memory.

Experiment 1 indicated that semantic priming of perceptual features increases affective response even when participants rely on perceptual processes to make judgments, that is, when exposure to the target object is too brief for conceptual processing. Participants in experiment 1 preferred a wine that matched (vs. did not match) a semantic prime associated with its visual identifiers, and this effect was more pronounced when exposure to the two wines was brief (16 milliseconds vs. 3 seconds). While experiment 1 included visualization instructions, which blurred the distinction between semantic and visual priming, experiments 2 and 3 relied solely on semantic primes and provided additional tests of the underlying process. Experiment 2 investigated the level of match between the prime and target that is required to facilitate subsequent perception of a target. In other research, perceptual fluency effects are known to require exact visual matches (Mandler et al. 1987), and similar to those effects, we found that the influence of semantic primes increased with the extent to which they matched the perceptual features of the target. In particular, liking of a 10:10 watch, which according to a pretest appears to smile at participants, was enhanced by prior exposure to smile + watch primes. Liking of an 8:20 watch, which according to a pretest appears to frown at participants, was enhanced by prior exposure to frown + watch primes. A smile or frown prime without the category prime failed to enhance processing fluency of the target and instead elicited a prime-congruent evaluation effect, as predicted by knowledge accessibility models or affective priming (see Higgins 1996). Experiment 3 triangulated on the effects observed in experiments 1 and 2 to further show that compatibility between the semantic prime and the perceptual characteristics of the target increases liking of the target by increasing the visual appeal of the target.

We show that the overlap between the two semantic concepts (e.g., watch and smile) primes the perception of the target (10:10 watch face as smiling). This can happen when perception is at subliminal levels (16 milliseconds; study 1) and at conscious levels (studies 1–3) and, based on study 1, may be stronger under subliminal (vs. supraliminal) exposure. Therefore, the evidence suggests that semantic primes can create perceptual fluency, and our experiments add to the growing literature on processing fluency effects in several ways. First, they demonstrate a novel way in which perceptual fluency of a product may be enhanced—by semantic priming of its perceptual features. This extends previous observations that perceptual fluency is enhanced by prior exposure to the exact same stimulus (Zajonc 1968) or by presentation variables such as clarity and figure-ground contrast (Reber et al. 1998) and adds a new variable of managerial interest, as discussed below. Second, the observed effects also extend observations of the influence of conceptual fluency, which have been obtained with semantic priming and with manipulations of predictability of the target. Specifically, our data show that liking of the target is enhanced not only by priming concepts that belong to the associative network of the target (e.g., librarian and book) but also by priming concepts that facilitate the processing of perceptual features that are not commonly associated with the target.

On theoretical grounds, we conjecture that semantic primes may often be more efficient in facilitating the processing of visual stimuli than perceptual primes. Specifically, the mere-exposure literature showed that perceptual priming is sensitive to minor mismatches in visual detail between the perceptual prime and perceptual target (Mandler et al. 1987; Zajonc 1968). Accordingly, perceptual priming may require exposure to the exact target stimulus to enhance evaluations, whereas semantic priming can achieve this effect for previously unseen targets, as the present experiments demonstrate.

In addition to contributing to the fluency literature, our findings add to the knowledge accessibility literature (Higgins 1996) by qualifying the assumption that semantic primes exert an influence through prime-congruent encoding of ambiguous stimuli or through prime-congruent evaluation of unambiguous stimuli. Most notably, the prime-congruent encoding hypothesis predicts that priming with frown-related words increases the likelihood that a watch set to 8:20 (experiment 2) is seen as frowning, resulting in less favorable evaluations. Instead, frown-related words resulted in a more favorable evaluation of this watch. This suggests that the immediate affective reaction elicited by high processing fluency can override prime-congruent encoding effects, with affect trumping the semantic meaning of the target (Labroo and Lee 2006). This possibility deserves further investigation in other content domains.

Turning to the managerial implications of our findings, we note that associating products with unique visual identifiers can be beneficial, even when the identifier has no meaningful substantive association with the product. This is especially
relevant if a marketer wishes to target certain consumer groups by selecting identifiers that signify important or salient aspects of these consumers’ lives. The otherwise arbitrary visual identifier will be easy to process for those consumers and the resulting fluency experience is likely to enhance product evaluation. Moreover, unique arbitrary identifiers such as distinct logos, packaging, or mnemonics (e.g., a frog on a wine label) have a potentially important advantage over identifiers that are meaningfully related to the type of product (e.g., grapes on a wine label): they are not shared by competitors. Hence, increasing the fluency and familiarity of a unique and arbitrary identifier is likely to benefit the specific product, whereas similar efforts to increase the fluency and familiarity of meaningful identifiers may benefit the whole product category. Over time, the association of unique identifiers with a brand facilitates development of that particular brand’s equity, whereas the association of meaningful identifiers runs the risk of contributing to brand dilution because they may also be readily applied to competing brands in the category. Note that this suggestion is radically different from traditional branding strategies: whereas common branding wisdom (Keller, Heckler, and Houston 1998) suggests that identifiers should be strongly associated with the product category, our findings suggest that it may be beneficial to choose visual identifiers that consumers strongly associate with themselves. Over time, however, even arbitrary visual identifiers may become part of the brand’s associative network and may therefore also be associated with the category to which the target brand belongs. For example, the Nike “swoosh” or McDonald’s Ronald McDonald are a meaningful part of the brand’s equity but are also likely to be part of the cognitive structures relating to shoes or fast foods. Once this happens, priming such identifiers may increase liking of all brands in the category. These implications of the present findings deserve further testing.

REFERENCES

