Restricted Lie Algebras

Jared Warner
1. Definitions and Examples

Definition 1.1. Let k be a field of characteristic p. A **restricted Lie algebra** $(\mathfrak{g}, (\cdot)^{[p]})$ is a Lie algebra \mathfrak{g} over k and a map $(\cdot)^{[p]} : \mathfrak{g} \to \mathfrak{g}$ called the **p-operation** such that for all $a \in k$ and for all $x, y \in \mathfrak{g}$ we have:

- $(ax)^{[p]} = a^{p}x^{[p]}$
- $\text{ad}_{x^{[p]}} = \text{ad}_{x}^{p}$ and
- $(x + y)^{[p]} = x^{[p]} + y^{[p]} + \sum_{i=1}^{p-1} s_{i}(x, y) \frac{x^{i-1}}{i}$ where $s_{i}(x, y)$ is the coefficient of t^{i-1} in the expression $\text{ad}_{tx+y}(x)$

Recall that for any $x \in \mathfrak{g}$ $\text{ad}_{x} : \mathfrak{g} \to \mathfrak{g}$ is the linear map defined by $\text{ad}_{x}(y) = [x, y]$ for all $y \in \mathfrak{g}$.

Example 1.2. Let \mathfrak{g} be any abelian Lie algebra, i.e., a Lie algebra such that $[x, y] = 0$ for all $x, y \in \mathfrak{g}$. Notice that bilinearity and alternativity ($[x, x] = 0$ for all $x \in \mathfrak{g}$) imply that any one-dimensional Lie algebra is abelian. The p-operation defined by $x^{[p]} = 0$ for all $x \in \mathfrak{g}$ gives \mathfrak{g} the structure of a restricted Lie algebra. Notice that the condition that \mathfrak{g} be abelian is necessary, for if we consider \mathfrak{gl}_{n}, the Lie algebra of $n \times n$ matrices with entries in k whose bracket is given by commutation, it can be shown that the second and third conditions listed above are not satisfied by the p-operation $A^{[p]} = 0$ for all matrices $A \in \mathfrak{gl}_{n}$.

Example 1.3. Let A be any associative, unital algebra over k (from here on, unless otherwise specified, by algebra we mean an associative, unital algebra over k). Define a bracket and p-operation on elements of A by $x^{[p]} := x^{p}$ and $[x, y] := xy - yx$ for all $x, y \in A$. We check that such definitions give A the structure of a restricted Lie algebra. Let $x, y \in A$ and $a \in k$.

- $(ax)^{p} = a^{p}x^{p} = a^{p}x^{[p]}$, so the first condition above holds.
- $\text{ad}_{x^{[p]}}(y) = \text{ad}_{x^{p}}(y) = [x^{p}, y] = x^{p}y - yx^{p}$. Using the combinatorial identity $\dbinom{n}{i} + \dbinom{n}{i-1}$ along with induction, one can show that $\text{ad}_{x}^{p}(y) = \sum_{i=0}^{n}(-1)^{i}\dbinom{n}{i}x^{n-i}yx^{i}$.

Since $\dbinom{p}{i}$ is divisible by p for all $i = 1, 2, \ldots, p-1$, it follows that $\text{ad}_{x}^{p}(y) = x^{p}y - yx^{p}$, and hence the second condition above holds.

- The third condition is difficult to check in generality. Using the above formula, we have that $\text{ad}_{x^{[p]}}^{p-1}(x) = \sum_{i=0}^{p-1}(-1)^{i}\dbinom{p-1}{i}(tx + y)^{p-1-i}(tx + y)^{i}$. I claim that the coefficient of t^{j-1} in this expression is $j \sum_{\text{all words of length } p \text{ in } x \text{ and } y \text{ that have } j \text{ x's}}$. From the formula, it can be seen that the coefficient of t^{j-1} is equal to $\sum_{i=0}^{p-1}(-1)^{j}\dbinom{p-1}{i} \sum_{\text{all words of length } p \text{ in } x \text{ and } y \text{ with } j \text{ x's, whose } (p-i)^{th} \text{ entry is } x \text{ }}$. Given a word of length p in x and y with j x's, we would like to know how many times this word is counted in the given sum. Fix a word w of the desired
type and let \(J \subset \{0, 1, 2, \ldots, p-1\} \) be the subset of \(j \) elements such that for all \(i \in J \), \(w \) has an \(x \) in the \((p - i)^{\text{th}}\) position. Then this word is counted \(\sum_{i \in J} (-1)^i \binom{p-1}{i} \) many times. Since \((-1)^i \binom{p-1}{i} \equiv 1 \mod p\) for all \(i \in \{0, 1, 2, \ldots, p-1\} \) as can be checked with the above combinatorial identity, it follows that each word is counted \(j \) times, proving the claim. Now \((x + y)^p = (x + y)p = x^p + y^p + \sum \text{(words in } x \text{ and } y \text{ of length } p) = x^p + y^p + \sum_{i=1}^{p-1} \frac{s_i(x, y)}{i} \), and the third condition holds as well.

Denote by \(A_L \) the restricted Lie algebra associated to the algebra \(A \). We use the same notation for the Lie algebra (not restricted) associated to \(A \) (with bracket given by the commutator as defined above).

2. Enveloping Algebras

Here we desire to discuss the restricted enveloping algebra \(u(g) \) of a restricted Lie algebra \(g \). We first briefly review the definition of the universal enveloping algebra.

Definition 2.1. Let \(k \) be a field of any characteristic, and let \(g \) be a Lie algebra over \(k \). The universal enveloping algebra of \(g \) is an algebra \(U \) together with a map of Lie algebras \(h : g \to U_L \) satisfying the following universal property: given any algebra \(A \) and any map of Lie algebras \(f : g \to A_L \), there exists a unique map of algebras \(g : U \to A \) such that \(f = g \circ h \).

Note that the universal property described implies that if a universal enveloping algebra exists for \(g \), then it is unique up to unique isomorphism. That is, if \(U \) and \(U' \) both satisfy the universal property, then there is a unique algebra isomorphism \(U \to U' \). This can be seen as follows. Let \(h : g \to U_L \) and \(h' : g \to U'_L \) both satisfy the universal property. Hence, there exist unique maps \(g : U \to U' \) and \(g' : U' \to U \) satisfying \(h' = g \circ h \) and \(h = g' \circ h' \). Hence \(h = g' \circ g \circ h \). Since we also have \(h = id_U \circ h \), by uniqueness, it follows that \(g' \circ g = id_U \). The same argument applies to \(g \circ g' \), so that \(g \) and \(g' \) are algebra isomorphisms. We now show that the universal enveloping algebra always exists for any Lie algebra.

Theorem 2.2. Let \(g \) be a Lie algebra. The universal enveloping algebra of \(g \) always exists.

Proof. Let \(T(g) = \bigoplus_{n \geq 0} T^n(g) \) be the tensor algebra of \(g \) where \(T^n(g) = g \otimes \cdots \otimes g \) \(n \)-times, and multiplication is defined by concatenation of simple tensors. Notice that this multiplication turns \(T(g) \) into a graded algebra. Notice that \(g \hookrightarrow T(g) \) by taking \(x \in g \) to itself in \(T^1(g) = g \subset T(g) \). Next, let \(I \) be the two-sided ideal generated by elements of the form \(x \otimes y - y \otimes x - [x, y] \) where \(x, y \in g \), and let \(U = T(g)/I \). Let \(h : g \to U_L \) take \(x \in g \) to the coset \(x + I \) in \(U \). Notice this is a map of Lie algebras precisely because \(x \otimes y - y \otimes x = [x, y] \) in \(U \). We show that the pair \((U, h)\) satisfy the universal property described above.

Suppose \(A \) is an algebra, and \(f : g \to A_L \) is a map of Lie algebras. Define a map of algebras \(g : U \to A \) by mapping \(x + I \) to \(f(x) \) and extending linearly and multiplicatively. Thus,
\[g \circ h(x) = g(x + I) = f(x), \text{ and } g \text{ is unique because any map of algebras } U \to A \text{ is determined by where it sends a set of generators, in this case, } \{x + I\}_{x \in \mathbb{g}} = T^1(\mathbb{g}). \]

The discussion before the proof justifies the notation \(U(\mathbb{g}) \) for the universal enveloping algebra of a Lie algebra \(\mathbb{g} \).

Let’s calculate some universal enveloping algebras for some specific Lie algebras.

Example 2.3. Let \(\mathbb{g} = \mathfrak{g}_m := k_L \), ie, \(\mathfrak{g}_m \) is a one dimensional \(k \) vector space with bracket given by the commutator in \(k \). Since \(\mathfrak{g}_m \) is one dimensional, it is necessarily abelian. Hence the universal enveloping algebra is commutative.

We have implicitly defined two functors in the preceding pages. The functor \(U(\cdot) : \{\text{Lie algebras}\} \to \{\text{algebras}\} \) takes a Lie algebra to its universal enveloping algebra. The functor \((\cdot)_L : \{\text{algebras}\} \to \{\text{Lie algebras}\} \) takes an algebra to its associated Lie algebra. Notice that the universal property states that any \(f \in \text{Hom}_{\text{Lie alg}}(\mathbb{g}, A_L) \) uniquely defines a \(g \in \text{Hom}_{\text{alg}}(U(\mathbb{g}), A) \). Conversely, any algebra map \(U(\mathbb{g}) \to A \) uniquely defines a map of Lie algebras \(\mathbb{g} \to A_L \). Hence there is a bijection between the Hom sets \(\text{Hom}_{\text{Lie alg}}(\mathbb{g}, A_L) \) and \(\text{Hom}_{\text{alg}}(U(\mathbb{g}), A) \) for any Lie algebra \(\mathbb{g} \) and algebra \(A \). Moreover, this bijection is natural with respect to \(\mathbb{g} \) and \(A \), meaning the correspondence of Hom sets is consistent with Lie algebra maps \(\mathbb{h} \to \mathbb{g} \) and algebra maps \(B \to A \). In other words, for all maps \(\mathbb{g} \to \mathbb{h}, B \to A \), the following diagram commutes:

\[
\begin{array}{ccc}
\text{Hom}_{\text{Lie alg}}(\mathbb{g}, A_L) & \cong & \text{Hom}_{\text{alg}}(U(\mathbb{g}), A) \\
\uparrow & & \uparrow \\
\text{Hom}_{\text{Lie alg}}(\mathbb{h}, B_L) & \cong & \text{Hom}_{\text{alg}}(U(\mathbb{h}), B)
\end{array}
\]

Here the vertical arrows are induced by the maps \(\mathbb{g} \to \mathbb{h}, \text{ and } B \to A \). To see why this is true, start in the bottom right with a map of algebras \(U(\mathbb{h}) \to B \). Moving left gives us a map of Lie algebras \(\mathbb{h} \to B_L \) induced by restriction. Moving up then yields a map of Lie algebras \(\mathbb{g} \to \mathbb{h} \to B_L \to A_L \). If we initially move up, we have the map of algebras \(U(\mathbb{g}) \to U(\mathbb{h}) \to B \to A \), and then moving left, we restrict to \(\mathbb{g} \to U(\mathbb{g}) \), yielding \(\mathbb{g} \to \mathbb{h} \to B_L \to A_L \).

Functors that give such a correspondence on Hom sets are called adjoint functors, and are now defined in greater generality.

Definition 2.4. Let \(\mathcal{C} \) and \(\mathcal{D} \) be two categories, and \(G : \mathcal{C} \to \mathcal{D} \) and \(F : \mathcal{D} \to \mathcal{C} \) be two functors. Suppose for all objects \(X \in \mathcal{C} \) and \(Y \in \mathcal{D} \) there is a natural bijection \(\text{Hom}_\mathcal{C}(F(Y), X) \leftrightarrow \text{Hom}_\mathcal{D}(Y, G(X)) \), ie, a bijection such that for all morphisms \(Y \to Y' \) and \(X' \to X \) the following diagram commutes:

\[
\begin{array}{ccc}
\text{Hom}_\mathcal{D}(Y, G(X)) & \cong & \text{Hom}_\mathcal{C}(F(Y), X) \\
\uparrow & & \uparrow \\
\text{Hom}_\mathcal{D}(Y', G(X')) & \cong & \text{Hom}_\mathcal{C}(F(Y'), X')
\end{array}
\]

Then \(F \) is called left adjoint to \(G \) and \(G \) is said to be right adjoint to \(F \).
In our definition of adjoint functors, we recover the case just discussed if C is the category of algebras, D is the category of Lie algebras, $F = U(\cdot)$ and $G = (\cdot)L$. Having sufficiently reviewed the universal enveloping algebra of a Lie algebra, we now define the restricted enveloping algebra of a restricted Lie algebra. To do so, we need the notion of a map of restricted Lie algebras.

Definition 2.5. Let g and h be restricted Lie algebras. A k-linear map $f : g \to h$ is a homomorphism of restricted Lie algebras if:
\[f([x, y]) = [f(x), f(y)] \quad \text{and} \]
\[f(x^{[p]}) = f(x)^{[p]} \]
for all $x, y \in g$.

This is the clear definition of a homomorphism in any category respecting the algebraic structure. We now define the restricted enveloping algebra analogously to how we defined the universal enveloping algebra, through a universal property. As above, we will show if it exists, the restricted enveloping algebra is unique up to unique isomorphism, and we will construct it as a quotient of the universal enveloping algebra.

Definition 2.6. Let g be a restricted Lie algebra. The restricted enveloping algebra of g is an algebra u together with a map of restricted Lie algebras $h : g \to u_L$ satisfying the following universal property: given any algebra A and any map of restricted Lie algebras $f : g \to A_L$, there exists a unique map of algebras $g : u \to A$ such that $f = g \circ h$.

Theorem 2.7. The restricted enveloping algebra of a restricted Lie algebra g exists, and is unique up to unique isomorphism.

Proof. The proof of uniqueness is no different than that for the universal enveloping algebra. To construct the restricted enveloping algebra, let $J \subset U(g)$ be the two-sided ideal generated by elements of the form $x \otimes x \otimes \ldots \otimes x - x^{[p]} + I$, where the tensor occurs p times. Let $u = U(g)/J$. We can still think of g as sitting inside of u by sending $x \in g$ to the element $(x + I) + J \in u$. Notice that this embedding induces a map of restricted Lie algebras $h : g \to u_L$ precisely because quotienting by J forces the p-operation in u_L to agree with that of g inside of u_L. We show that the pair (u, h) satisfy the universal property described above.

Suppose A is an algebra, and $f : g \to A_L$ is a map of restricted Lie algebras. Define a map of algebras $g : u \to A$ by mapping $(x + I) + J$ to $f(x)$ and extending linearly and multiplicatively. Thus, $g \circ h(x) = g((x + I) + J) = f(x)$, and g is unique because any map of algebras $u \to A$ is determined by where it sends a set of generators, in this case, $\{(x + I) + J\}_{x \in g \to u}$.

Again, by uniqueness, we may use the notation $u(g)$ when speaking of the restricted enveloping algebra associated to g.

3. Representations

Before moving on to our desired discussion of the connection between restricted Lie algebras and height 1 infinitesimal group schemes, it makes sense that we discuss representations of Lie algebras and restricted Lie algebras, having just spent a considerable amount of time developing the concept of enveloping algebras.
Definition 3.1. Let \(\mathfrak{g} \) be a Lie algebra. A representation of \(\mathfrak{g} \) is a map of Lie algebras \(\rho : \mathfrak{g} \rightarrow \mathfrak{gl}(V) \) where \(V \) is a \(k \) vector space. If \(\mathfrak{g} \) is a restricted Lie algebra, then a representation of \(\mathfrak{g} \) is a map of restricted Lie algebras \(\rho : \mathfrak{g} \rightarrow \mathfrak{gl}(V) \) where the \(p \)-operation in \(\mathfrak{gl}(V) \) is given by \(p^th \)-powers of matrices.

We now show that a representation of \(\mathfrak{g} \) is equivalent to a module over the appropriate enveloping algebra. Working with modules is often easier than working with maps of Lie algebras, so this correspondence is quite useful.

Theorem 3.2. A representation of a (restricted) Lie algebra \(\mathfrak{g} \) defines a \(\mathfrak{u}(\mathfrak{g}) \)-module structure on \(V \). Similarly, a \(\mathfrak{u}(\mathfrak{g}) \)-module \(V \) defines a representation of \(\mathfrak{g} \).

Proof. We start with the case of a Lie algebra \(\mathfrak{g} \). Let \(\rho : \mathfrak{g} \rightarrow \mathfrak{gl}(V) \) be a representation. Define a \(\mathfrak{u}(\mathfrak{g}) \)-module structure on \(V \) by \(x \cdot v := \rho(x)v \) for all \(x \in \mathfrak{g} \rightarrow \mathfrak{gl}(V) \) and all \(v \in V \), and extend multiplicatively and linearly. To show that this scalar multiplication is well-defined, we must show that \(x \otimes y - y \otimes x \) and \([x, y] \) in \(\mathfrak{u}(\mathfrak{g}) \) yield the same action on \(v \) for all \(x, y \in \mathfrak{g} \). This follows from the fact that \(\rho \) is a map of Lie algebras, and that the bracket in \(\mathfrak{gl}(V) \) is given by commutation. Now suppose we are given a \(\mathfrak{u}(\mathfrak{g}) \)-module \(V \). Define a map \(\rho : \mathfrak{g} \rightarrow \mathfrak{gl}(V) \) by \(\rho(x)v := x \cdot v \). Linearity follows from the module structure, and \(\rho \) preserves the bracket because \(x \otimes y - y \otimes x = [x, y] \) in \(\mathfrak{u}(\mathfrak{g}) \). For the case of restricted Lie algebras, everything from above holds, with one extra step to deal with the \(p \)-operation. The details are nearly identical to how we dealt with the bracket.

Example 3.3. Let \(\mathfrak{g} \) be a restricted Lie algebra. Consider the map:

\[
\rho : \mathfrak{g} \rightarrow \mathfrak{gl}(\mathfrak{g})
\]

\[
x \mapsto \text{ad}_x
\]

We check that this is indeed a map of restricted Lie algebras. Linearity follows from that of the bracket. The Jacobi identity shows that the above map is a map of Lie algebras (ie, the bracket is preserved). Since restricted Lie algebras satisfy \(\text{ad}_x[p] = \text{ad}_x^2 \), the above map also preserves the \(p \)-operation. Hence we have a representation of \(\mathfrak{g} \) called the adjoint representation. Notice that if we forget the \(p \)-operation, we still have a representation of a Lie algebra.

4. Hopf Algebra Structure

5. Infinitesimal Groups Schemes of Height 1

In this section we would like to establish an equivalence of categories between height 1 infinitesimal group schemes \(G \) and finite-dimensional restricted Lie algebras \(\mathfrak{g} \). Let \(\mathcal{C} \) be the category of height 1 infinitesimal group schemes, and let \(\mathcal{D} \) be the category of restricted Lie algebras. We begin by defining a functor \(E : \mathcal{C} \rightarrow \mathcal{D} \).

Let \(G \in \mathcal{C} \). There are many ways to define \(E \), and all such are naturally isomorphic. We take the view of \(k \)-linear \(\epsilon \)-derivations, ie, \(E(G) := \text{Der}(k[G], k) \), where for a commutative ring \(R \) and an \(R \)-module \(M \), \(\text{Der}(R, M) \) is all \(k \)-linear maps satisfying \(f(rs) = rf(s) + sf(r) \) for all \(r, s \in R \). Here we view \(k \) as a \(k[G] \)-module via the augmentation map \(\epsilon \). To give \(\text{Der}(k[G], k) \) the structure of a restricted Lie algebra, first notice that \(\text{Der}(k[G], k) \) is a \(k \)-space via pointwise addition and scalar multiplication. Turn \(\text{Der}(k[G], k) \) into a unital, associative \(k \)-algebra by defining a multiplication as follows: \(f * g := (f \otimes g) \circ \Delta \). It can be shown
that $\text{Der}(k[G], k)$ is closed under this multiplication. Having defined an algebra structure on $\text{Der}(k[G], k)$, we can now make it a restricted Lie algebra as in § 1 by defining the bracket to be the commutator and the p-operation to be p^th-powers.

Now we construct a functor $F : \mathcal{D} \to \mathcal{C}$. Let $g \in \mathcal{D}$. Then as shown previously, $u(g)^*$ is a local, commutative Hopf algebra, satisfying $x^p = 0$ for all $x \in \mathfrak{m}$ where \mathfrak{m} is the unique maximal ideal in $u(g)^*$. Hence, g defines a height one infinitesimal group scheme $G_g := \text{Hom}_{k\text{-alg}}(u(g)^*, \Box)$. Let $\phi : g \to \mathfrak{h}$ be a map of restricted Lie algebras.

We make explicit a number of computations to further clarify the above equivalence.

Example 5.1. Let $G = \mathbb{G}_{a(1)}$, the first Frobenius kernel of \mathbb{G}_a. Then $k[G] = \mathbb{G}_{a(1)} \cong k[T]/T^p$, where T is a primitive element in the Hopf algebra structure. Using the properties of a k-linear ϵ derivation, it can be shown that in this case, if $f \in \text{Der}(k[G], k)$, then $f(a_0 + a_1 T + \ldots + a_{p-1} T^{p-1}) = a_1 f(T)$, and is thus completely determined by where it maps T. Thus, $\text{Der}(k[G], k)$ is a one-dimensional k-algebra. Now suppose $f(T) = a$ and $g(T) = b$ for $f, g \in \text{Der}(k[G], k)$. Then $(f * g)(T) = a + b$ so that both the bracket and p-operation are trivial. Hence we see that $E(G) = g_a$. In the other direction, let’s consider the trivial restricted Lie algebra, g_a, a one-dimensional (necessarily abelian) Lie algebra with trivial p-operation, i.e., $x^p = 0$ for all $x \in g_a$. I claim that the height one group scheme corresponding to g_a is $\mathbb{G}_{a(1)}$, the first Frobenius kernel of \mathbb{G}_a. We have that $k[\mathbb{G}_{a(1)}] \cong k[T]/(T^p) \cong k\mathbb{G}_{m,(1)}$, ie, $k[T]/(T^p)$ is self-dual. The claim is a result of the computation of the restricted enveloping algebra of g_a done above, which is $k[T]/(T^p)$.

Example 5.2. Generalizing the previous example, let us consider $g_m^{\otimes r}$, the r-dimensional trivial restricted Lie-algebra. $u(g_m^{\otimes r}) = k[x_1, \ldots, x_r]/(x_1^p, \ldots, x_r^p)$ as was shown above, and since this Hopf algebra is also self dual, we are looking for a height one group scheme whose coordinate algebra is $k[x_1, \ldots, x_r]/(x_1^p, \ldots, x_r^p)$. The desired group scheme is $\mathbb{G}^{x_r}_{a,(1)}$.

Example 5.3. Let $g = g_m := k_L$, ie, g_m is a one dimensional k vector space with bracket and p-operation given by commutator and p^th powers respectively. The calculation of $u(g_m)$ was done above, yielding the result $u(g_m) \cong k[x]/(x^p - x)$. I claim that the height one group scheme corresponding to g_m is $\mathbb{G}_{m,(1)}$, the first Frobenius kernel of \mathbb{G}_m. We have that $k[\mathbb{G}_{m,(1)}] \cong k[T]/(T^p - 1)$ and $k\mathbb{G}_{m,(1)} \cong k^{p/(p^2)}$ so to prove the claim, it suffices to exhibit a Hopf algebra isomorphism $f : k[x]/(x^p - x) \to k^{p/(p^2)}$. The appropriate map is given by $x \mapsto \sum_{i=1}^{p-1} i e_i$. Since algebra maps preserve multiplicative identities, we must have $1 \mapsto \sum_{i=0}^{p-1} e_i$.

Extending this map multiplicatively, we see that $x^n \mapsto \sum_{i=1}^{p-1} i^ne_i$ because the e_i are mutually orthogonal idempotents. That $x^n - x$ maps to zero is a result of Fermat’s little theorem. It can also be shown that f preserves the counit, comultiplication, and the antipode.

If we let $\{1, x, x^2, \ldots, x^{p-1}\}$ and $\{e_0, e_1, e_2, \ldots, e_{p-1}\}$ be ordered bases for $k[x]/(x^p - x)$ and $k^{p/(p^2)}$ respectively, then the matrix of f, viewed as a linear transformation is given by:
where the entries are to be reduced mod p. This matrix has a non-zero determinant because it has the same determinant as its $p - 1 \times p - 1$ Vandermonde sub-matrix excluding the first row and column. This sub-matrix has non-zero determinant because each row is generated by powers of the distinct numbers $1, 2, 3, ..., p - 1$. Thus, the matrix is invertible and f is an isomorphism. The inverse is given by the following matrix:

\begin{equation}
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & \ldots & 0 \\
0 & -1 & -2 & -3 & -4 & \ldots & -(p - 1)^2 \\
0 & -1 & -2 & -3 & -4 & \ldots & -(p - 1)^3 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & -1 & -2 & -3 & -4 & \ldots & -(p - 1) \\
-1 & -1 & -1 & -1 & -1 & \ldots & -1 \\
\end{pmatrix}
\end{equation}

I’ve written the matrices with entries that suggest the pattern involved, neglecting to reduce mod p. Here I write out the matrices for the case $p = 5$, reducing the entries appropriately:

\begin{equation}
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 4 & 3 & 1 \\
1 & 3 & 4 & 2 & 1 \\
1 & 4 & 1 & 4 & 1 \\
\end{pmatrix} \quad \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 4 & 2 & 3 & 1 \\
0 & 4 & 1 & 1 & 4 \\
0 & 4 & 3 & 2 & 1 \\
4 & 4 & 4 & 4 & 4 \\
\end{pmatrix}
\end{equation}

Notice that f^{-1} gives a system of p mutually orthogonal idempotents in the $k[x]/(x^p - x)$ as the images of the e_i, a nontrivial result. To be explicit, we have:

\begin{equation}
e_0 \mapsto 1 - x^{p-1} \quad e_n \mapsto - \sum_{i=1}^{p-1} n^{i-1} x^{p-i} \quad n = 1, 2, ..., p - 1
\end{equation}

Example 5.4. Combining the previous examples, we see that if $\mathfrak{g} = \mathfrak{g}_{m,1}^{\otimes r}$, then $G_{\mathfrak{g}} = \mathbb{G}_{m,1}^{\times r}$.

Example 5.5. In this example we would like to make explicit the result suggested by notation, that is, that the restricted Lie algebras \mathfrak{gl}_n and \mathfrak{sl}_n correspond to the height one groups schemes $GL_{n,(1)}$ and $SL_{n,(1)}$ respectively. Here $k[GL_{n,(1)}] \cong k[x_{ij}]/(x_{ij} - \delta_{ij})$ and $k[SL_{n,(1)}] \cong k[GL_{n,(1)}]/(x_{ij} - \delta_{ij})$.