1. Rational Points

Let \(X \) be a scheme. To each \(x \in X \) is attached a local ring, the stalk \(\mathcal{O}_x \). Let \(\mathfrak{m}_x \) be the unique maximal ideal contained in \(\mathcal{O}_x \).

Definition 1.1. The residue field of \(x \) is the field \(k(x) := \mathcal{O}_x / \mathfrak{m}_x \). In the case that \(X \) is a scheme over a field \(k \), then \(x \) is a rational point if \(k(x) \cong k \).

Now suppose \(X \) is an affine scheme over \(k \), with coordinate algebra \(k[X] \). We now show there is a one-to-one correspondence between the rational points of \(X = \text{Spec} \ k[X] \) and \(X(k) := \text{Hom}_k(k[X], k) \).

Suppose \(p \in \text{Spec} \ k[X] \) is rational, ie, \(p \subset k[X] \) is a prime ideal and \(k(p) = k[X]_p / \mathfrak{m}_p \cong k \) where \(k[X]_p \) is the localization of \(k[X] \) at the prime ideal \(p \), and \(\mathfrak{m}_p \) is the unique maximal ideal \(pk[X]_p \) in \(k[X]_p \). Remember that in the case of an affine scheme \(X = \text{Spec} \ A \), we have \(\mathcal{O}_p \cong A_p \) and \(\mathfrak{m}_p \cong pA_p \) where

\[
pA_p = \{ \frac{a}{b} \mid a \in p, b \notin p \}\]

Define \(f_p \) to be the following map of \(k \)-algebras:

\[
k[X] \to k[X]_p \to k[X]_p / \mathfrak{m}_p
a \mapsto \frac{a}{1} \mapsto \frac{a}{1} + \mathfrak{m}_p
\]

Thus given a rational point \(p \), we have defined a \(k \)-algebra map \(f_p : k[X] \to k \). Notice that the kernel of \(f_p \) is \(p \).

Next, let \(f : k[X] \to k \) be a map of \(k \)-algebras. Since \(f \) is a map of \(k \)-algebras, it must be surjective, and hence its kernel, \(p_f \) is a maximal ideal. I claim that \(p_f \in X \) is a rational point. To prove the claim, we must exhibit an isomorphism of fields between \(k(p_f) \) and \(k \).

Consider the following map:

\[
k(p_f) \longrightarrow k
\frac{a}{b} + \mathfrak{m}_{pf} \mapsto \frac{f(a)}{f(b)}
\]

The map is well defined because \(b \notin p_f = \ker f \) so the denominator on the right is not zero, and also because \(f(a) = 0 \) for all \(a \in p_f \) so that the map factors through \(\mathfrak{m}_{pf} \), ie, the map doesn’t depend on the choice of representative on the left. It is a map of fields because \(f \) is a map of \(k \)-algebras. Surjectivity follows from that of \(f \), and injectivity follows from:

\[
\frac{f(a)}{f(b)} = 0 \iff f(a) = 0 \iff a \in p_f \iff \frac{a}{b} \in \mathfrak{m}_{pf} \iff \frac{a}{b} + \mathfrak{m}_{pf} = 0
\]

Date: December 2012.
Now consider the map of \(k \)-algebras:
\[
k[X] \to k[X]_{p_f} \to k[X]_{p_f}/\mathfrak{m}_{p_f} \to k
\]
so that given \(p_f \), we recover \(f \). This observation finishes the proof of the bijection between rational points of an affine scheme \(X \) over \(k \) and \(X(k) \), the set of \(k \)-algebra maps from \(k[X] \) to \(k \).

Conjecture 1.2. The functor from affine schemes over \(k \) to sets assigning to a scheme \(X \) the set of rational points of \(X \) is naturally isomorphic to the functor assigning to \(X \) the set of \(k \)-algebra maps from \(k[X] \) to \(k \).

For any field extension \(K/k \), notice that a point \(p \in X \) with \(k(p) \cong K \) yields a surjection \(k[X] \to K \) in a similar manner to our definitions above, but that the kernel of a map of \(k \)-algebras \(k[X] \to K \) does not necessarily have residue field isomorphic to \(K \), because the map \(k[X] \to K \) need not be surjective.

Let’s consider some examples.

Example 1.3. Let \(X = \text{Spec } k[x] = \mathbb{A}^1_k \) be the affine line over \(k \). \(k \)-algebra homomorphisms \(k[x] \to k \) are determined by a choice of image for \(x \), and are thus the same as evaluation maps. Let \(f_x : k[x] \to k \) be evaluation at \(a \in k \), so that \(\ker f_x = (x - a) \in X \). The above correspondence says that \(k(\ker f_x) \cong k \), so that the rational points of \(X \) are the ideals \((x - a) \).

What about the prime ideal \((0) \in X \)? Localizing at \((0) \) gives the fraction field, so that \(k((0)) \cong k(x) \), the field of rational functions. In general, if \(k[X] \) is an integral domain, then \((0) \) is a prime ideal, and \(k((0)) \cong \text{Frac}(k[X]) \).

Since \(k[x] \) is a PID, the other points of \(X \) (prime ideals of \(k[x] \)) correspond to monic irreducible non-constant polynomials of degree \(\geq 2 \). If \(k \) is algebraically closed, no such polynomials exist. Suppose \(k = \mathbb{R} \) and consider the prime ideal \(p = (x^2 + 1) \). What is \(k(p) \)? I claim that \(k(p) \cong \mathbb{C} \). Consider the following map:
\[
\mathbb{R}[x]_{p}/\mathfrak{m}_{p} \to \mathbb{C}
\]
\[
f + \mathfrak{m}_{p} \to \frac{f(i)}{g(i)}
\]
This map is an isomorphism of fields, which can be checked with similar reasoning used in the correspondence shown above.

Conjecture 1.4. Let \(X = \text{Spec } k[x] \) be the affine line. Then for any monic irreducible non-constant polynomial \(f \), \(k(p) \cong k(f) \subset \bar{k} \) where \(p = (f) \) and \(k(f) \) is the splitting field of \(f \).

If the above conjecture is true, in particular it would show that every monic irreducible non-constant polynomial of degree \(\geq 2 \) in \(\mathbb{R}[x] \) defines a prime ideal whose residue field is \(\mathbb{C} \). This follows from the fact that there are no intermediate fields between \(\mathbb{R} \) and \(\mathbb{C} \), which results from Galois theory and the fact that \([\mathbb{C}, \mathbb{R}] = 2 \).

Example 1.5. Let \(X = \text{Spec } k[x, y] \cong \mathbb{A}^2_k \) be the affine plane. As in the previous example, \(k \)-algebra maps \(k[x, y] \to k \) are evaluation maps, and we see that the rational points are the ideals \((x - a, y - b) \) for \(a, b \in k \). Also as in the previous example, the residue field of the zero ideal is the fraction field, ie, \(k((0)) \cong k(x, y) \).
Conjecture 1.6. Let $X = \text{Spec } k[x, y]$ be the affine plane. Let $p_1 \subset p_2$ be two prime ideals in $k[x, y]$. Then $k(p_2) \subset k(p_1) \subset k(x, y)$, i.e., there is an order-reversing Galois correspondence between prime ideals in $k[x, y]$ and residue fields in $k(x, y)$.