Abstract. We introduce a new algebra $D_q(Mat_d(Q))$ associated to a quiver Q and dimension vector d, which yields a flat (PBW) q-deformation of the algebra of differential operators on the space of matrices associated to Q. This algebra admits a q-deformed moment map from the quantum group $U_q(gl_d)$, acting by base change at each vertex. The quantum Hamiltonian reduction, $A^\xi_d(Q)$, of D_q by μ_q at the character ξ, is simultaneously a quantization of Crawley-Boevey and Shaw’s multiplicative quiver variety, and a q-deformation of Gan and Ginzburg’s quantized quiver variety.

Specific instances of the data (Q, d, ξ) yield q-deformations of familiar algebras in representation theory: for example, the spherical DAHA’s of type A arise from Calogero-Moser quivers, quantizations of parabolic character varieties (Deligne-Simpson moduli spaces) arise from comet-shaped quivers, and algebras of difference operators on Kleinian singularities arise from affine Dynkin quivers.