EQUITY INDICATORS FOR A GREATER SAN DIEGO: FOCUS ON DEMOGRAPHY, ECONOMY AND CIVIC HEALTH

PREPARED FOR THE SAN DIEGO FOUNDATION
MALIN BURNHAM CENTER FOR CIVIC ENGAGEMENT

MANUEL PASTOR, JENNIFER ITO, MIRABAI AUER, JARED SANCHEZ, JUSTIN SCOGGINS
Our Greater San Diego Vision

A region where all San Diegans Work, Enjoy, Live and Learn to the fullest

San Diegans established the following goals:

1. A **prosperous economy** provides a broad range of good job opportunities.
2. **Housing options** match what people want and can afford.
3. A **quality learning** environment effectively prepares people for life.
4. **Neighborhoods** are safe, vibrant, and convenient centers of community life, arts, and culture.
5. **Nature** is accessible, connected, and protected for people to enjoy.
6. Convenient **transportation** choices are available for people to go where they want.
7. Trusted regional leadership, collaboration and participation create a future that fulfills people’s hopes and dreams.
Our Greater San Diego Vision
Equity Indicator Framework

Demography: Who lives in the region and how are demographics changing?
• Racial/Ethnic Diversity
• Demographic Change
• Population Growth
• Racial Generation Gap

Prosperity: How is the economic growth and well-being of the region?
• Job Growth
• Labor Market Trends
• Income Inequality
• Poverty and Working Poverty
• Racial Economic Gap
• Industry Trends

Resilience: How prepared are the region’s residents for the 21st century economy?
• Education Attainment
• Disconnected Youth
• Health
• Cumulative Risk and Exposure

Connectedness: How are the region’s residents and neighborhoods connected to one another and to the region’s assets and opportunities?
• Means of Transportation
• Commute Times
• Job-Housing Match
• Housing Burdens
• Residential Segregation
• Food Environments
• Park Access

Engagement: How engaged are the region’s residents in civic affairs and political processes?
• Voter Turnout
• Volunteerism
• Trust in Institutions
Equity Indicators
Why Do They Matter?

• Data can, does, and should drive policymaking

• Data can be under threat: consider the effort to cut funding for the American Community survey

• Data is not the only driver: what is not measured will not be achieved, but measurement alone is not enough

Many reports use indicators to measure regional progress in the economy and quality of life – but not on equity
Equity Indicators

Our Approach

• A stress that equity is actually consistent with other goals – important for both economic growth and environmental sustainability

• A conscious attempt to measure equity, including attention to issues of racial disparities and immigrant inclusion

• A notion that this is part of the creation of new “knowledge communities” of understanding – shared values, visions, and benchmarks

... Knowing together is growing together
Equity Indicators
The Purpose of Indicators

Measuring Change

Looking Forward

Making Policy
The San Diego Region
For the purposes of this profile and data analysis, we define the San Diego region as the San Diego-Carlsbad-San Marcos metropolitan statistical area, which is the same as San Diego County.
Changing Demography
Demography

Highlights

Who lives in the region and how is it changing?

• San Diego is one of the nation’s most diverse regions.

• The region has experienced dramatic growth and change over the past several decades, with the share of people of color increasing from 26 percent to 52 percent since 1980.

• Latinos and Asians are driving growth and change in the region and will continue to do so over the next several decades.

• The people-of-color population is growing rapidly and expanding into many new communities, creating increasingly diverse suburbs.

• There is a large and growing racial generation gap between the region’s mainly white senior population and its diverse youth population.

People of color:

52%

Diversity rank
(out of largest 150 regions):

#13

Racial generation gap rank
(out of largest 150 regions):

#20
Demography
One of the Most Diverse Regions

Diversity Score in 2010: Top 150 Metros Ranked

Source: U.S. Census Bureau.
The Diversity Score is a measure of racial/ethnic diversity within each metropolitan area.
Demography

Growth and Change Over the Past Several Decades

The Population Has Diversified

Racial/Ethnic Composition, 1980-2010

People of Color Have Driven the Region’s Growth Since 1980

Net Population Growth and Composition, 1980-2010

Source: U.S. Census Bureau.
The Latino and Asian Populations Experienced the Most Growth in the Past Decade

Growth Rates of Major Racial/Ethnic Groups, 2000-2010

- White: -3%
- Black: -5%
- Latino: 32%
- Asian/Pacific Islander: 33%
- Native American: -8%
- Other: 17%

Latino Population Growth Predominantly due to Births of U.S.-born Latinos
- U.S.-born Latino: 77%
- Foreign-born Latino: 23%

Asian Population Growth Equally due to Births of U.S.-born Asians & Immigration
- U.S.-born API: 50%
- Foreign-born API: 50%

Source: U.S. Census Bureau.
Source: IPUMS.
Demography
Latinos and Asians are Driving Growth and Change

Asian Population, 2006-2010
- Filipino, 137,794
- Chinese or Taiwanese, 45,227
- All other Asians, 39,361
- Asian Indian, 21,427
- Vietnamese, 40,865
- Korean, 20,058
- Japanese, 16,772

Latino Population, 2006-2010
- Mexican, 843,194
- Puerto Rican, 15,802
- All other Latinos, 79,800

Source: IPUMS.
Demography

Many Neighborhoods are Becoming More Diverse

Sources: U.S. Census Bureau; Geolytics.
Note: Data is mapped on 2000 census tracts. Areas in white are missing data.
Demography
Many Neighborhoods are Becoming More Diverse

Sources: U.S. Census Bureau; Geolytics.
Note: Data is mapped on 2000 census tracts. Areas in white are missing data.
Percent Non-Hispanic White by Census Tract, 2010
City Heights BHC Site, San Diego County

Sources: U.S. Census Bureau; Geolytics.
Note: Data is mapped on 2000 census tracts. Areas in white are missing data.
Percent African American by Census Tract, 1980
City Heights BHC Site, San Diego County

Sources: U.S. Census Bureau; Geolytics.
Note: Data is mapped on 2000 census tracts. Areas in white are missing data.
Sources: U.S. Census Bureau; Geolytics.
Note: Data is mapped on 2000 census tracts. Areas in white are missing data.
Sources: U.S. Census Bureau; Geolytics.
Note: Data is mapped on 2000 census tracts. Areas in white are missing data.
Percent Asian/Pacific Islander by Census Tract, 1980 City Heights BHC Site, San Diego County

Less than 10%
10% - 19%
20% - 34%
35% or more
Missing data

Sources: U.S. Census Bureau; Geolytics.
Note: Data is mapped on 2000 census tracts. Areas in white are missing data.
Percent Asian/Pacific Islander by Census Tract, 2010
City Heights BHC Site, San Diego County

Sources: U.S. Census Bureau; Geolytics.
Note: Data is mapped on 2000 census tracts. Areas in white are missing data.
Demography
Many Neighborhoods are Becoming More Diverse

Sources: U.S. Census Bureau; Geolytics. Note: Data is mapped on 2000 census block groups. Block groups with 50 or fewer people in either year were excluded and are shaded in white.
Demography
Diversity is Suburbanizing

Sources: U.S. Census Bureau; Geolytics.
Note: Data is mapped on 2000 census tracts.
Demography
Diversity is Suburbanizing

2010
Race/Ethnicity by Census Tract
1 dot = 600 people
- Non-Hispanic White
- Black
- Latino
- Asian/Pacific Islander
- American Indian or Alaska Native
- Other or Mixed Race

Sources: U.S. Census Bureau; Geolytics.
Note: Data is mapped on 2000 census tracts.
Demography
Leading the Nation’s Demographic Transformation

The Population Will Continue to Grow More Diverse
Racial/Ethnic Composition, 1980-2040

<table>
<thead>
<tr>
<th>Year</th>
<th>U.S. % White</th>
<th>Other</th>
<th>Native American</th>
<th>Latino</th>
<th>Black</th>
<th>Asian/Pacific Islander</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>74%</td>
<td>4%</td>
<td>15%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>1990</td>
<td>65%</td>
<td>6%</td>
<td>20%</td>
<td>9%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>2000</td>
<td>55%</td>
<td>5%</td>
<td>27%</td>
<td>11%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>2010</td>
<td>48%</td>
<td>5%</td>
<td>32%</td>
<td>11%</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>2020</td>
<td>44%</td>
<td>4%</td>
<td>36%</td>
<td>12%</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>2030</td>
<td>40%</td>
<td>4%</td>
<td>40%</td>
<td>12%</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>2040</td>
<td>37%</td>
<td>4%</td>
<td>43%</td>
<td>12%</td>
<td>4%</td>
<td>4%</td>
</tr>
</tbody>
</table>

Projected

Percent People of Color by County
- Less than 30%
- 30% to 40%
- 40% to 50%
- Greater than 50%

Sources: U.S. Census Bureau; Woods & Poole Economics.
Demography
A Growing Racial Generation Gap

The Racial Generation Gap Has Increased Moderately Over Time

Percent People of Color (POC) by Age Group, 1980-2010

The Region’s Latinos and People of Mixed Racial Backgrounds are Much Younger than Other Groups

Median Age by Race/Ethnicity, 2006-2010

The Racial Generation Gap in 2010: Top 150 Metros Ranked

Source: U.S. Census Bureau.

Source: IPUMS.
Communities like City Heights are Much Younger than the Overall Population

Age Distribution by Sex, San Diego County, 2009-10

Age Distribution by Sex, City Heights, 2009-10

Source: U.S. Census Bureau.
Economic Prosperity
San Diego’s economy outpaces the nation’s but is positioning the region for greater inequality.

San Diego’s economy has shown strong job and earnings growth over the past few decades – but job growth is not keeping up with population growth.

Income inequality has widened, and the lowest-income workers have seen their wages decline since 1979.

Racial gaps persist in the labor market. At every level of educational attainment people of color have lower median hourly wages than whites. Poverty and working poverty rates are the highest for communities of color.

The fastest job growth was in low- and middle-wage jobs, but high-wage jobs had the most wage growth.

Wage growth for workers at the 10th percentile, since 1979:

-4%

Working poverty rank (out of largest 150 regions):

#72

Income inequality rank (out of largest 150 regions):

#62
Prosperity
Strong Long-Term Growth in Jobs and Output

Growth in Jobs and Gross Regional Product (GRP) has Consistently Outpaced the Nation

Cumulative Job Growth, 1979 to 2010

Cumulative Growth in Real GRP, 1979 to 2010

Source: U.S. Bureau of Economic Analysis.
Prosperity
Job Growth Fast but is it Fast Enough?
Earnings on the Rise

Growth in Jobs Relative to Population has Been Mostly Higher than the National Average

Cumulative Growth in Jobs-to-Population Ratio, 1979 to 2010
- San Diego-Carlsbad-San Marcos, CA
- United States

Earnings Growth Strong but Hard-Hit by Recession

Cumulative Growth in Real Earnings-Per-Job, 1979 to 2010
- San Diego-Carlsbad-San Marcos, CA
- United States

Source: U.S. Bureau of Economic Analysis.
Unemployment Rate in 2011: Top 150 Metros Ranked

Prosperity
Unemployment Higher Among Some Groups

Unemployment by Race/Ethnicity

Source: IPUMS.
Universe includes civilian population ages 25 through 64 not in group quarters.
Prosperity
Unemployment

Source: U.S. Census Bureau.
Notes: Areas in white are missing data. High people-of-color (POC) tracts are tracts with 77 percent or more POC - which represent the top fifth of Census tracts by percent POC.
Prosperity
Income Inequality

Household Income Inequality has Increased
Gini Coefficient, 1979 to 2006-2010

Gini Coefficient measures income equality on a 0 to 1 scale.
0 (Perfectly equal) -------> 1 (Perfectly unequal)

The Gini Coefficient in 2006-2010: Top 150 Metros Ranked

#1: Bridgeport-Stamford-Norwalk, CT (0.53)
#150: Ogden-Clearfield, UT (0.39)
#62: San Diego-Carlsbad-San Marcos, CA (0.45)

Prosperity
Income Inequality

Source: IPUMS.
Universe includes all households (no group quarters).
Wages Increase for Majority of Full-Time Workers but Drop for Lowest Income Workers

Real Earned Income Growth for Full-Time Workers Age 25-64, 1979 to 2006-2010

- San Diego-Carlsbad-San Marcos, CA
- United States

Earned Income Percentiles and Ratios, 2006-2010

<table>
<thead>
<tr>
<th></th>
<th>10th</th>
<th>20th</th>
<th>50th</th>
<th>80th</th>
<th>90th</th>
<th>90th/50th</th>
<th>80th/20th</th>
<th>50th/10th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earned Income Percentiles ($2010)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>San Diego-Carlsbad-San Marcos, CA</td>
<td>$20,226</td>
<td>$27,344</td>
<td>$48,673</td>
<td>$85,000</td>
<td>$111,000</td>
<td>2.3</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>United States</td>
<td>$19,300</td>
<td>$25,310</td>
<td>$42,508</td>
<td>$73,551</td>
<td>$99,909</td>
<td>2.4</td>
<td>--</td>
</tr>
</tbody>
</table>

Source: IPUMS.
Universe includes civilian noninstitutional full-time workers ages 25 through 64.
Prosperity
Shrinking Middle Class

The Share of Middle Class Households Declined

Households by Income Level, 1979 to 2006-2010
(all figures in 2010 dollars)

1979 1989 1999 2006-2010

Lower 30% 30% $31,762
Middle 40% $75,103
Upper 30% 27% $101,915

Source: IPUMS.
Universe includes all households (no group quarters).
Prosperity
Steady Levels of Poverty

Working Poverty Rate in 2006-2010: Top 150 Metros Ranked

Working poverty is defined as working full-time with an income below 150 percent of the poverty level.

Source: IPUMS.

Universe includes civilian non-institutional population ages 25 through 64 not in group quarters.
Prosperity
Racial Differences in Poverty and Working Poverty

Poverty, 2006-2010

- All, 12.5%
- White, 8.3%
- Black, 17.4%
- Latino, 19.5%
- Native American, 19.4%
- Other, 11.4%

Source: IPUMS.
Universe includes all persons not in group quarters.

Working Poverty, 2006-2010

- All, 4.1%
- White, 1.5%
- Black, 5.3%
- Latino, 9.9%
- Native American, 3.6%
- Other, 2.6%

Source: IPUMS.
Universe includes civilian non-institutional population ages 25 through 64 not in group quarters.
Prosperity

Education Helps – But Racial Economic Gaps Persist

Unemployment Rate by Educational Attainment and Race/Ethnicity, 2006-2010
(all figures in 2010 dollars)

Median Hourly Wage by Educational Attainment and Race/Ethnicity, 2006-2010
(all figures in 2010 dollars)

Source: IPUMS.
Universe includes civilian non-institutional population ages 25 through 64 not in group quarters.
Prosperity

Highest Job Growth in Low- and Middle-Wage Industries

The Fastest Job Growth is in Low- and Middle-Wage Jobs, but High-Wage Jobs had the Most Wage Growth

Growth in Jobs and Earnings by Wage Level, 1990-2010

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilities</td>
<td>$76,095</td>
<td>$98,147</td>
<td>High</td>
<td>30%</td>
<td>27%</td>
</tr>
<tr>
<td>Mining</td>
<td>$60,805</td>
<td>$55,727</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional, Scientific, and Technical Services</td>
<td>$57,414</td>
<td>$86,228</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management of Companies and Enterprises</td>
<td>$56,161</td>
<td>$86,749</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturing</td>
<td>$55,010</td>
<td>$71,092</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finance and Insurance</td>
<td>$50,703</td>
<td>$76,340</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information</td>
<td>$50,552</td>
<td>$77,581</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td>$46,878</td>
<td>$54,471</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wholesale Trade</td>
<td>$45,824</td>
<td>$62,608</td>
<td>Medium</td>
<td>30%</td>
<td>31%</td>
</tr>
<tr>
<td>Health Care and Social Assistance</td>
<td>$43,367</td>
<td>$49,082</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transportation and Warehousing</td>
<td>$41,797</td>
<td>$40,439</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real Estate and Rental and Leasing</td>
<td>$36,602</td>
<td>$44,437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education Services</td>
<td>$30,091</td>
<td>$38,694</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retail Trade</td>
<td>$28,668</td>
<td>$29,061</td>
<td>Low</td>
<td>40%</td>
<td>42%</td>
</tr>
<tr>
<td>Administrative and Support and Waste Management</td>
<td>$26,874</td>
<td>$36,473</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arts, Entertainment, and Recreation</td>
<td>$25,438</td>
<td>$32,311</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Services (except Public Administration)</td>
<td>$24,913</td>
<td>$26,555</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriculture, Forestry, Fishing and Hunting</td>
<td>$23,843</td>
<td>$28,802</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accommodation and Food Services</td>
<td>$16,457</td>
<td>$19,394</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Universe includes all jobs covered by the federal Unemployment Insurance (UI) program.
Prosperity
Reading a Bubble Chart

Industry Size, Pay, and Growth: Industry Trends
(Bubble size represents total employment in 2010)

- **Small Industry**: High Wages, No Growth
- **Large Industry**: High Wages, Positive Growth
- **Tiny Industry**: Medium/High Wages, Negative Growth
- **Med/Large Industry**: Low/Medium Wages, Positive Growth

Employment Growth, 2000-2010

Annual Average Earnings ($2010)

- $0
- $20,000
- $40,000
- $60,000
- $80,000
- $100,000

Employment Growth

- -100.0%
- -50.0%
- 0.0%
- 50.0%
- 100.0%
- 150.0%
Residents’ Resilience
There is a skills and education gap among African Americans and Latinos – they will be less competitive for the jobs of the future.

Diversity within diversity matters. For example, among Asian immigrants, Asian Indian have higher education levels than Vietnamese and Cambodians.

There has been progress among youth. High school graduation rates have increased for youth of color, and the number of youth that are disconnected from school and work has dropped steadily.

Health should be a regional concern. About 70 percent of African Americans and Latinos are obese or overweight.

Percent of the population with an associate’s degree or higher: 44%

Disconnected youth rank (out of largest 150 regions): #110

Percent of adults that are overweight or obese: 61%
There are Wide Gaps in Educational Attainment and Skills

Educational Requirements for New Jobs in the Region & Educational Attainment by Race/Ethnicity
Population 25-64, 2008-2010

- Less than an Associates Degree
- Associates degree and/or occupational program
- Bachelors degree or higher

Sources: Labor Market Information – CA Employment Development Department; IPUMS. Universe includes all persons ages 25 through 64.
Resilience
Differences in Education Levels among Immigrants

Asian and Latino Immigrants with an Associate’s Degree or Higher, 2006-2010

- Asian Indian: 90%
- Chinese or Taiwanese: 74%
- Korean: 73%
- Japanese: 68%
- Filipino: 53%
- Other (NH) API or mixed API: 47%
- Vietnamese: 36%
- Cambodian: 17%
- Laotian: 17%
- All Asian Immigrants: 57%
- Other Latino: 23%
- Guatemalan: 18%
- Mexican: 13%
- All Latino Immigrants: 15%

Source: IPUMS. Universe includes all persons ages 25 through 64.
Resilience
Decline in Disconnected Youth but Still a Concern

Percent of 16-24 Year Olds Not Enrolled in School and without a Diploma, 1990 to 2006-2010

Disconnected Youth: 16-24 Year Olds Not in Work or School, 1980 to 2006-2010

Percent Disconnected Youth in 2006-2010: Top 150 Metros Ranked

Source: IPUMS. Universe includes all persons ages 16 through 24.
Resilience

Health Indicators by Race/Ethnicity

Overweight and Obese by Race/Ethnicity, 2006-2010

Diabetes Rates by Race/Ethnicity, 2006-2010

Asthma Rates by Race/Ethnicity, 2006-2010

Percent of Adults that are Overweight or Obese in 2006-2010: Top 150 Metros Ranked

#1: Brownsville-Harlingen, TX (75%)

#149: San Francisco-Oakland-Fremont, CA (53%)

#116: San Diego-Carlsbad-San Marcos, CA (61%)

Source: Centers for Disease Control and Prevention.
Universe includes adults ages 18 and older.
Resilience
Hazards Proximity Score

Source: Environmental Justice Screening Method. Rachel Morello-Frosch (UC Berkeley), Manuel Pastor (USC), and James Sadd (Occidental College); analysis by USC’s Program for Environmental and Regional Equity (PERE).
Resilience
Health Risk and Exposure

Source: Environmental Justice Screening Method. Rachel Morello-Frosch (UC Berkeley), Manuel Pastor (USC), and James Sadd (Occidental College); analysis by USC's Program for Environmental and Regional Equity (PERE).
Resilience
Social and Health Vulnerability

Source: Environmental Justice Screening Method. Rachel Morello-Frosch (UC Berkeley), Manuel Pastor (USC), and James Sadd (Occidental College); analysis by USC’s Program for Environmental and Regional Equity (PERE).
Resilience
Cumulative Impact Score

Source: Environmental Justice Screening Method. Rachel Morello-Frosch (UC Berkeley), Manuel Pastor (USC), and James Sadd (Occidental College); analysis by USC’s Program for Environmental and Regional Equity (PERE).
Connectedness
Connectedness

Highlights

Are the region’s residents and neighborhoods connected to one another and to the region’s assets and opportunities?

- San Diego is auto dependent with 86 percent of residents using a car as their primary means of transportation to work.

- People of color are an important constituency for transit: They are less likely to own cars; more likely to have long commutes; and across all incomes, are more likely to use public transit.

- Communities of color have higher housing burdens and there is a mismatch between the location of affordable rental units and low-wage jobs.

- Overall residential segregation is declining at the regional scale, but isolation for Latinos and Asians has increased.

Percent of people of color living in high-poverty tracts:

12%

Percent of renters who are burdened by housing costs:

56%

Rent burden rank (out of largest 150 regions):

#14
Connectedness
How Residents Commute Varies by Race and Income

Lower Income Residents Are Less Likely to Drive Alone to Work
Means of Transportation to Work by Annual Earnings, 2006-2010

Transit Use Varies by Income and Race
Percent Using Public Transit by Earnings and Race/Ethnicity/Nativity, 2006-2010

Source: U.S. Census Bureau.
Universe is workers in the region ages 16 and older.

Source: IPUMS.
Universe is population ages 16 and older who worked during week prior to survey.
Residents of Color Are Less Likely to Own Cars

Percent of Households without a Vehicle by Race/Ethnicity, 2006-2010

- **Black**: 12%
- **Native American**: 9%
- **Latino**: 8%
- **Other**: 6%
- **Asian/Pacific Islander**: 6%
- **White**: 5%
- **All**: 6%

Source: IPUMS.
Universe includes all households (no group quarters).
Connectedness
Households without a Car

Source: U.S. Census Bureau.
Notes: Areas in white are missing data. High people-of-color (POC) tracts are tracts with 77 percent or more POC - which represent the top fifth of Census tracts by percent POC.
Connectedness
Commute Times

Source: U.S. Census Bureau.
Notes: Areas in white are missing data. High people-of-color (POC) tracts are tracts with 77 percent or more POC - which represent the top fifth of Census tracts by percent POC.
Connectedness
Concentrated Poverty

Percent of Population below Poverty Level by Census Tract, 2006 - 2010

- Less than 10%
- 10% - 19%
- 20% - 29%
- 30% - 39%
- 40% or more
- High people-of-color tract

Source: U.S. Census Bureau.
Notes: Areas in white are missing data. High people-of-color (POC) tracts are tracts with 77 percent or more POC - which represent the top fifth of Census tracts by percent POC.
Connectedness
Latinos and Blacks Have Higher Housing Burdens

Burdened renters and homeowners are defined as renter/owner-occupied households that spend more than 30 percent of household income on rent or selected monthly owner costs.

Share of Households that are Rent Burdened, 2006-2010: Top 150 Metros Ranked

#1: Miami-Fort Lauderdale-Miami Beach, FL (62%)

#14: San Diego-Carlsbad-San Marcos, CA (56%)

#150: Davenport-Moline-Rock Island, IA-IL (40%)
Connectedness
Low-wage Jobs – Affordable Rental Housing

Note: The rental housing data is from the 2006-2010 5-year ACS, while the low-wage jobs data is from the 2010 LED. Affordable rental units are those with a monthly gross rent of $749 or less, corresponding to approximately 30 percent of the monthly income of a household supported by two low-wage workers. Source: U.S. Census Bureau, 2006-2010. Low-wage jobs are those in which workers’ average monthly earnings are $1,250 or less. The dot refers to the job site, not the worker’s home address. Source: U.S. Census Bureau, LED, 2010.
Residential Segregation is Lower than the Nation

Change in Residential Segregation, 1980-2010

San Diego-Carlsbad-San Marcos, CA
United States

Youth Segregation is Declining; Overall Segregation is Stable

Change in Residential Segregation by Age, 1980-2010

Sources: U.S. Census Bureau; Geolytics.
See methodology for details of residential segregation index calculations.
Isolation index approximates the likelihood that a resident will see a member of their own race/ethnicity in their neighborhood (census tract).

Sources: U.S. Census Bureau; Geolytics. See methodology for details of residential segregation index calculations.
Connectedness

Food Deserts by Race/Ethnicity

Race/Ethnicity of Food Deserts, 2010

<table>
<thead>
<tr>
<th>Race/Ethnicity</th>
<th>Food Desert</th>
<th>Food Accessible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native American</td>
<td>29%</td>
<td>32%</td>
</tr>
<tr>
<td>Asian/Pacific Islander</td>
<td>6%</td>
<td>5%</td>
</tr>
<tr>
<td>Latino</td>
<td>8%</td>
<td>11%</td>
</tr>
<tr>
<td>Black</td>
<td>53%</td>
<td>48%</td>
</tr>
<tr>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: U.S. Census Bureau; USDA. See methodology for details.
Connectedness
Food Deserts

Sources: U.S. Census Bureau; Geolytics; USDA (see methodology for details).
Note: Data is mapped on 2000 census tracts.
Connectedness

Park Access

Source: Garcia, Robert and Seth Strongin (2010). Healthy Parks, Schools and Communities: Green Access and Equity for the San Diego Region. San Diego and Los Angeles, CA: The San Diego Foundation and The City Project. For more on The City Project, see: http://www.cityprojectca.org/
Civic Engagement
Volunteering has increased since 2007 with the most recent annual rate of volunteerism at 31 percent.

Citizens have a moderate level of confidence in institutions but more so in public institutions like schools than in the media or corporations.

The demographics of the region’s citizen voting-age population today looks very different than the population of the future, as measured by the demographics of the youth population.

Naturalizing eligible immigrants could shift the composition of the electorate in many parts of the region.

Volunteer Hours per Resident (annual):

50

Turnout as a Share of the Eligible Population, 2008 Presidential Election:

62%
Engagement
Volunteerism is on the Rise

Volunteerism Rates, 2007 to 2011*

- 2007: 26%
- 2008: 26%
- 2009: 29%
- 2010: 24%
- 2011: 31%

Volunteer Hours per Resident, 2007 to 2011

- 2007: 51
- 2008: 32
- 2009: 34
- 2010: 31
- 2011: 50

* Volunteers are defined as persons (ages 16 and older) who performed unpaid volunteer activities during the year. The count of volunteers includes only persons who volunteered through or for an organization - the figures do not include persons who volunteered in a more informal manner.

Source: Corporation for National and Community Service.
Engagement
Confidence in Institutions

Level of Confidence in Various Institutions, 2011
(percent of those surveyed)

Source: Corporation for National and Community Service.
Engagement
Voting

Turnout as a Share of the Voting Eligible Population, 2008 Presidential Election
62%

Sources: U.S. Census Bureau; David Leip’s Atlas of U.S. Presidential Elections.

Citizens’ Level of Participation in Local Elections, 2011
(percent of voting eligible population)

Source: Corporation for National and Community Service.
Engagement
Youth, Overall, and Citizen Voting Age Population

Youth (<18) by Race/Ethnicity, 2010
- Latino, 46%
- White, 34%
- Black, 5%
- Asian/Pacific Islander, 9%
- Other, 6%

Total Population by Race/Ethnicity, 2010
- White, 48%
- Latino, 21%
- Black, 5%
- Asian/Pacific Islander, 11%
- Other, 4%

Citizen Voting Age Population by Race/Ethnicity, 2007-2011
- White, 61%
- Latino, 21%
- Black, 5%
- Asian/Pacific Islander, 10%
- Other, 3%

Source: U.S. Census Bureau. For more on the Citizen Voting Age Population see the Data Sources and Methodology section.
Engagement
Naturalization is an Engagement Opportunity

Source: U.S. Census Bureau. LPRs are any person not a citizen of the United States who is residing in the U.S. under legally recognized and lawfully recorded permanent residence as an immigrant.
Looking Forward

- Diversity is driving population change – and is occurring everywhere

- The economy has fared well – but is positioned for greater inequality

- Pay attention to the preparedness of the region’s residents – especially to compete for jobs of the future

- Make connections across geography – and generations

- Nurture civic health – and engagement of emerging populations
Data Sources and Methodology
Data and Methods

Data Sources

Much of the data and analysis in this profile draws upon a regional equity database and a series of Equity Profiles developed in partnership with PolicyLink.

All data presented in this profile are based on PERE analysis of data from a variety of sources, with specific sources indicated beneath each chart or map, or at the bottom of the page if the sources apply to all charts and/or maps on the page.

Please note: The San Diego region is synonymous with San Diego County. In the profile, all references to “San Diego,” the “San Diego region,” and “San Diego-Carlsbad-San Marcos” are referring to the County.

<table>
<thead>
<tr>
<th>Source</th>
<th>Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated Public Use Microdata Series (IPUMS)</td>
<td>1980 5% State Sample 1990 5% Sample 2000 5% Sample 2006 through 2010 American Community Survey (ACS), pooled single-year, 1%, samples 2010 American Community Survey</td>
</tr>
<tr>
<td>U.S. Department of Agriculture</td>
<td>Food Desert Locator</td>
</tr>
<tr>
<td>Woods & Poole Economics</td>
<td>2011 Complete Economic and Demographic Data Source</td>
</tr>
<tr>
<td>Centers for Disease Control and Prevention</td>
<td>Behavioral Risk Factor Surveillance System</td>
</tr>
</tbody>
</table>
Data and Methods

Definition of Selected Terms

Broad Racial/Ethnic Origin

In all of the analysis presented, all categorization of people by race/ethnicity and nativity is based on individual responses to various Census surveys. All people included in our analysis were first assigned to one of five racial/ethnic categories, depending their response to two separate questions on race and Hispanic origin as follows:

- “White” and “non-Hispanic White” are used interchangeably and refer to all people who identify as white and do not identify as being of Hispanic origin.
- “Black” and “African American” are used interchangeably and refer to all people who identify as Black or African American and do not identify as being of Hispanic origin.
- “Latino” refers to all people who identify as being of Hispanic origin, regardless of racial identification.
- “Asian,” “Asian/Pacific Islander” and “API” are used interchangeably and refer to all people who identify as Asian or Pacific Islander and do not identify as being of Hispanic origin.
- “Native American” and “Native American and Alaska Native” are used interchangeably and refer to all people who identify as Native American or Alaskan Native and do not identify as being of Hispanic origin.
- “People of Color” or “POC” is used to refer to all people who do not identify as non-Hispanic White.

Nativity

The term “U.S.-born” refers to all people who identify as being born in the U.S. (including U.S. territories and outlying areas), or born abroad of American parents. The term “immigrant” refers to all people who identify as being born abroad, not of American parents.

Detailed Racial/Ethnic Origin

Given the diversity of ethnic origin and substantial presence of immigrants among the Latino and Asian populations, we sometimes present data for more detailed racial/ethnic categories among these groups. In order to maintain consistency with the broad racial/ethnic categories, and to enable the examination of second-and-higher generation immigrants, these more detailed categories are drawn from the same two questions on race and Hispanic origin, which are based on the respondent’s ancestry rather than country-of-origin. For example, while country-of-origin information could have been used to identify Filipinos among the Asian population or Salvadorans among the Latino population, it could only do so for immigrants, leaving only the broad “Asian” and “Latino” racial/ethnic categories for the U.S.-born population. While this methodological choice makes little difference in the numbers of immigrants by detailed origin we report — i.e. the vast majority of immigrants from El Salvador mark “Salvadoran” under Hispanic origin — it is an important point of clarification.
Other Selected Terms

- The terms “region,” “metropolitan area” and “metro” are used interchangeably to refer to the geographic areas defined as Metropolitan Statistical Areas by the U.S. Office of Management and Budget.

- The term “communities of color” generally refers to distinct groups defined by race/ethnicity among people of color.

- The term “full-time” workers refers to all persons in the IPUMS microdata who reported working at least 45 or 50 weeks (depending on the year of the data) and usually worked at least 35 hours per week during the year prior to the survey. A change in the “weeks worked” question in the 2008 ACS, as compared to prior years of the ACS and the long form of the decennial census, caused a dramatic rise in the share of respondents indicating that they worked at least 50 weeks during the year prior to the survey. To make our data on full-time workers more comparable over time, we applied a slightly different definition in 2008 and later than in earlier years: in 2008 and later, the “weeks worked” cutoff is at least 50 weeks while in 2007 and earlier it is 45 weeks. The 45 week cutoff was found to produce a national trend in the incidence of full-time work over the 2005-2010 period that was most consistent with that found using data from the March Supplement of the Current Population Survey, which did not experience a change to the relevant survey questions. For more information, see http://www.census.gov/acs/www/Downloads/methodology/content_test/P6b_Weeks_Worked_Final_Report.pdf.
Data and Methods
Definition of Selected Terms

Other Selected Terms

- At several points in the profile we present rankings comparing the San Diego region to the “largest 150 metros” or “largest 150 regions,” and refer in the text to how San Diego compares with these metros. In all such instances, we are referring to the largest 150 metropolitan statistical areas in terms of 2010 population.

- In regard to monetary measures (income, earnings, wages, etc.) the term “real” indicates the data has been adjusted for inflation. All inflation adjustments are based on the Consumer Price Index for all Urban Consumers (CPI-U) from the U.S. Bureau of Labor Statistics, available at: ftp://ftp.bls.gov/pub/special.requests/cpi/cpiai.txt

- Some may wonder why the graph on page 38 indicates the years 1979, 1989, and 1999 rather than the actual survey years from which the information is drawn (1980, 1990, and 2000, respectively). This is because income information in the decennial census for those years is reported for the year prior to the survey. While seemingly inconsistent, the actual survey years are indicated in the graphs on page 41 depicting rates of poverty and working poverty, as these measures are partly based on family composition and work efforts at the time of the survey, in addition to income from the year prior to the survey.
About IPUMS Microdata

Although a variety of data sources were used, much of our analysis is based on a unique dataset created using microdata samples (i.e. “individual-level” data) from the Integrated Public Use Microdata Series (IPUMS), for four points in time: 1980, 1990, 2000, and 2006 through 2010 “pooled” together. While the 1980 through 2000 files are based on the decennial census and cover about 5% of the U.S. population each, the 2006 through 2010 files are from the American Community Survey (ACS) and cover only about 1% of the U.S. population each. Five years of ACS data were pooled together to improve the statistical reliability and to achieve a sample size that is comparable to that available in previous years. Survey weights were adjusted as necessary to produce estimates that represent an average over the 2006 through 2010 period.

Compared to the more commonly used census “summary files,” which includes a limited set of summary tabulations of population and housing characteristics, use of the microdata samples allows for the flexibility to create more illuminating metrics of equity and inclusion, and provide a more nuanced view of groups defined by age, race/ethnicity, and nativity in each region of the U.S.

A Note on Sample Size

While the IPUMS microdata allows for the tabulation of detailed population characteristics, it is important to keep in mind that because such tabulations are based on samples, they are subject to a margin of error and should be regarded as estimates – particularly in smaller regions and for smaller demographic subgroups. In effort to avoid reporting highly unreliable estimates, we do not report any estimates that are based on a universe of fewer than 100 individual survey respondents (i.e. unweighted N<100).
Data and Methods

Demographic Change

Adjustments made to Census Summary Data on Race/Ethnicity by Age

Demographic change and what is referred to as the “racial generation gap” (page 29) are important elements of the equity profile. Care was taken to generate consistent estimates of people by race/ethnicity and age group (under 18, 18-64, and over 64) for the years 1980, 1990, 2000. The racial/ethnic groups include: non-Hispanic white, non-Hispanic Black, Hispanic/Latino, non-Hispanic Asian and Pacific Islander, non-Hispanic Native American/Alaskan Native, and non-Hispanic Other (including Other single race alone and those identifying as multiracial). While for 2000 and 2010, this information is readily available in SF1 of each year, for 1980 and 1990, estimates had to be made to insure consistency over time, drawing on two different summary files for each year.

For 1980, while information on total population by race/ethnicity was available at the county level for all the requisite groups in STF1, for race/ethnicity by age group we had to look to STF2, where it was only available for non-Hispanic white, non-Hispanic Black, Hispanic, and the remainder of the population. To estimate the number non-Hispanic Asian and Pacific Islanders, non-Hispanic Native Americans/Alaskan Natives, and non-Hispanic Others among the remainder for each age group, we applied the distribution of these three groups from the overall county population (of all ages) from STF1.

For 1990, population by race/ethnicity at the county level was taken from STF2A, while population by race/ethnicity by age group was taken from the 1990 MARS file – a special tabulation of people by age, race, sex, and Hispanic origin. However, to be consistent with the way race is categorized by the Office of Management and Budget’s (OMB) Directive 15, the MARS file allocates all persons identifying as “Other race” or multiracial to a specific race. After confirming that population totals by county were consistent between the MARS file and STF2A, we calculated the number of “Other race” or multiracial that had been added to each racial/ethnic group in each county (for all ages combined) by subtracting the number that is reported in STF2A for the corresponding group. We then derived the share of each racial/ethnic group in the MARS file that was made up of “Other race” or multiracial people and applied this share to estimate the number of people by race/ethnicity and age group exclusive of the “Other race” and multiracial, and finally number of the “Others race” and multiracial by age group.
Data and Methods

Demographic Projections

Adjustments made to National Demographic Projections Using 2010 Census Results

National projections of the non-Hispanic white share of the population are based on the U.S. Census Bureau’s 2008 National Population Projections, which include of the population by race/ethnicity. However, because those projections are based on the 2000 Census and the 2010 Census has since been released, we made some minor adjustments to incorporate the recently released 2010 Census results and to insure consistency in the racial/ethnic categories included in our historical analysis of demographic change.

As noted above, while our categorization of race/ethnicity includes a non-Hispanic Other category (including Other single race alone and those identifying as multiracial), the 2008 National Population Projections follow OMB 1997 guidelines and essentially distribute the non-Hispanic other single race alone group across the other defined racial ethnic categories. Specifically, we compared the percentage of the total population composed of each racial/ethnic group in the projected data for 2010 to the actual percentage reported by the 2010 Census. We subtracted the projected percentage from the actual percentage for each group to derive an adjustment factor, and carried this adjustment factor forward by adding it to the projected percentage for each group in each projection year.

Finally, we applied the adjusted population distribution by race/ethnicity to the total projected population from the 2008 National Population Projections to get the projected number of people by race/ethnicity.
Projections of racial/ethnic composition by county are based on initial county-level projections from Woods & Poole Economics, Inc. However, given that they were made prior to the release of the 2010 Census, and they use a different categorization of race than we use, a careful set of adjustments were made to incorporate the recently released 2010 Census results and to insure consistency with the racial/ethnic categories included in our historical analysis of demographic change.

Similar to the 1990 MARS file described above, the Woods & Poole projection follow the OMB Directive 15 race categorization, assigning all persons identifying as “Other race” or multiracial to one of the five mutually exclusive race categories: White, Black, Latino, Asian/Pacific Islander, or Native American. Thus, we first generated an adjusted version of the county-level Woods & Poole projections that removed the Other and multiracial group from each of these five categories. This was done by comparing the Woods & Poole projections for 2010 to the actual 2010 Census results, figuring out the share of each racial ethnic group in the Woods & Poole data that was composed of Others and multiracials in 2010, and applying it forward to later projection years. From these projections we calculated the county-level distribution by race/ethnicity in each projection year for the five groups (White, Black, Latino, Asian/Pacific Islander, and Native American), exclusive of Others and multiracials.

To estimate the county-level Other and multiracial share of the population in each projection year, we then generated a simple straight-line projection of this share using information from SF1 of the 2000 and 2010 Census. Keeping the projected Other and multiracial share fixed, we allocated the remaining population share to each of the other five racial/ethnic groups by applying the racial/ethnic distribution implied by our adjusted Woods & Poole projections for each county and projection year.

The result was a set of adjusted projections for the six-group racial/ethnic distribution in each county, which was then applied to projections of the total population by county from Woods & Poole to get projections of the number of people for each of the six racial/ethnic groups. Finally, these county-level projections were adjusted to match our adjusted national projections by race/ethnicity using a simple Iterative Proportional Fitting (IPF) procedure.
Data and Methods

Gross Regional Product (GRP)

Adjustments made to BEA Data
The data presented on page 33 on national Gross Domestic Product (GDP) and its analogous regional measure, Gross Regional Product (GRP) – both referred to as GRP in the text – is based on data from the U.S. Bureau of Economic Analysis (BEA). However, due to changes in the estimation procedure used for the national (and state level) data in 1997, a lack of metropolitan area estimates prior to 2001, and no available county-level estimates for any year, a variety of adjustments and estimates were made to produce a consistent series at the national, state, metropolitan area, and county levels from 1969 to 2010.

Adjustments at the State and National Levels
While data on Gross State Product (GSP) is not reported directly in this profile, it was used in making estimates of gross product at the county level for all years and at the regional level prior to 2001, so we applied the same adjustments to it that were applied to the national GDP data. Given a change in BEA’s estimation of gross product at the state and national levels from a SIC basis to a NAICS basis in 1997, data prior to 1997 was adjusted to avoid any erratic shifts in gross product in that year. While the change to NAICS basis occurred in 1997, BEA also provides estimates under a SIC basis in that year. Our adjustment involved figuring the 1997 ratio of NAICS-based gross product to SIC-based gross product for each state and the nation, and multiplying it by the SIC-based gross product in all years prior to 1997 to get our final estimate of gross product at the state and national levels.

Metropolitan Area Estimates
To generate metro area estimates for all years, a more complicated estimation procedure was followed. First, an initial set of metro estimates for each year was generated by taking our final state-level estimates and allocating gross product to the counties in each state in proportion to total earnings of employees working in each county – a BEA variables that is available for all counties and years. Next, these initial county estimates were aggregated to the metropolitan area level, and were compared to BEA’s official metropolitan area estimates for 2001 and later. They were found to be very close, with a correlation coefficient very close to one (0.9997). Despite the near-perfect correlation, we still used the official BEA estimates in our final data series for 2001 and later. However, to avoid any erratic shifts in gross product in during the years up until 2001, we made the same sort of adjustment to our estimates of gross product at the metropolitan area level that was made to the state and national data – we figured the 2001 ratio of the official BEA estimate to our initial estimate, and multiplied it by our initial estimates for 2000 and earlier to get our final estimate of gross product at the metropolitan area level.
To analyze the decline in middle-class households (as shown on page 40), we began with the regional household income distribution in 1979 – the year for which income is reported in the 1980 Census (and the 1980 IPUMS microdata). The middle 40 percent of households were defined as “middle class,” and the income upper and lower bounds in terms of household income (adjusted for inflation to be in 2010 dollars) that contained the middle 40 percent of households were identified. We then adjusted these bounds over time to increase (or decrease) at the same rate as real average household income growth, identifying the share of households falling above, below, and in between the adjusted bounds as the upper, lower, and middle class, respectively, for each year shown. Thus, the analysis of the size of the middle class examines the share of households enjoying the same relative standard of living in each year as the middle 40 percent of households did in 1979.
Assembling a Complete Dataset

The analysis of jobs and wages by industry shown on pages 44-46 is based on a industry-level dataset constructed using 2-digit NAICS industries from the Bureau of Labor Statistics’ Quarterly Census of Employment and Wages (QCEW). Due to some missing (or non-disclosed) data at the county level, we supplemented our dataset using information from Woods & Poole Economics’ Complete Economic and Demographic Data Source (CEDDS), which contains complete jobs and wages data for broad, 2-digit NAICS industries at multiple geographic levels. (Proprietary issues barred us from using CEDDS directly, so we instead used it to complete the QCEW dataset.)

Given differences in the methodology underlying the two data sources (in addition to the proprietary issue), it would not be appropriate to simply “plug in” corresponding CEDDS data directly to fill in the QCEW data for non-disclosed industries. Therefore, our approach was to first calculate the number of jobs and total wages from non-disclosed industries in each county, and then distribute those amounts across the non-disclosed industries in proportion to their reported numbers in the CEDDS data.

To make for a more accurate application of the CEDDS, we made some adjustments to it to better align it with the QCEW. One of the challenges of using CEDDS as a “filler dataset” is that it includes all workers, while QCEW includes only wage and salary workers. To normalize the CEDDS data universe, we applied both a national and regional wage and salary adjustment factor; given the strong regional variation in the share of workers who are wage and salary, both adjustments were necessary. Second, while the QCEW data is available on an annual basis, the CEDDS is available on a decadal basis until 1995, at which point it becomes available on an annual basis. For the 1990-1995 period, we estimated the CEDDS annual jobs and wages figures using a straight-line approach. Finally, we standardized the CEDDS industry codes to match the NAICS codes used in the QCEW.

It is important to note that not all counties were missing data at the 2-digit NAICS level in the QCEW, and the majority of larger counties with missing data were only missing data for a small number of industries and only in certain years. Moreover, when data is missing it is often for smaller industries. Thus, the estimation procedure described is not likely to greatly affect our analysis of industries – particularly for larger counties.
Data and Methods
Change in Jobs and Wages by Industry/Wage Level

Changes between 1990 and 2010

Using our filled-in QCEW dataset (for more on the creation of this dataset, see the previous page, “Employment and Wages by Industry: Assembling a Complete Dataset”), we calculated shifts in regional industrial job composition and wage growth over time by industry wage level (see page 44).

Using 1990 as the base year, we classified broad industries (at the 2-digit NAICS level) into three wage categories: low-, medium-, and high-wage. An industry’s wage category was based on its average annual wage, and each of the three categories contained approximately one-third of all private industries in the region.

We applied the 1990 industry wage category classification across all the years in the dataset, so that the industries within each category remained the same over time. This way, we could track the broad trajectory of jobs and wages in low-, medium-, and high-wage industries.

This approach was adapted from a method used in a Brookings Institution report, Building From Strength: Creating Opportunity in Greater Baltimore's Next Economy. For more, see: http://www.brookings.edu/research/reports/2012/04/26-baltimore-economy-vey.

While we initially sought to conduct the analysis at a more detailed NAICS level, the large amount of missing data at the 3 to 6-digit NAICS levels (which could not be resolved the method that was applied to generate our filled-in 2-digit QCEW dataset) prevented us from doing so.
Data and Methods
Health Data and Analysis

Health data shown on page 52 were taken from the Behavioral Risk Factor Surveillance System (BRFSS) database, housed in the Centers for Disease Control and Prevention. The BRFSS database is created from randomized telephone surveys conducted by states, which then incorporate their results into the database on a monthly basis.

The results of this survey are self-reported and the population includes all related adults, unrelated adults, roomers, and domestic workers who live at the residence. The survey does not include adult family members who are currently living elsewhere, such as at college, a military base, a nursing home, or a correctional facility.

The most detailed level of geography associated with individuals in the BRFSS data is the county, which was utilized in this analysis.

While the data allow for the tabulation of personal health characteristics, it is important to keep in mind that because such tabulations are based on samples, they are subject to a margin of error and should be regarded as estimates – particularly in smaller regions and for smaller demographic subgroups.

To increase statistical reliability, we combined five years of survey data, for the years 2006 through 2010. As an additional effort to avoid reporting potentially misleading estimates, we do not report any estimates that are based on a universe of fewer than 100 individual survey respondents (i.e., unweighted N<100). This is similar to, but more stringent than, a rule indicated in the documentation for the 2010 BRFSS data of not reporting (or interpreting) percentages based on a denominator of fewer than 50 respondents. Even with this sample size restriction, regional estimates for smaller demographic subgroups should be regarded with particular care.

For more information and access to the BRFSS database, please visit http://www.cdc.gov/brfss/index.htm.
Data and Methods
Environmental Justice Screening Method

A series of maps on pages 53-56 portray the Environmental Justice (EJ) conditions within the region. Environmental justice is best measured through a cumulative impacts (CI) approach, which paints a full picture of community burden and emphasizes the importance of evaluating both health risks and social vulnerability.

One CI measurement tool, which we use in this profile, is the Environmental Justice Screening Method (EJSM). The EJSM was developed by researchers at the University of Southern California, University of California, Berkeley, and Occidental College under a contract from the California Air Resources Board (CARB). It is a method within a family of CI screening tools that offers a simple, flexible, and transparent way to examine the relative rank of cumulative impacts within regions and determine priority EJ neighborhoods. The EJSM has been both peer-reviewed and undergone extensive presentation to community organizations interested in environmental and EJ issues.

The EJSM derives a CI score at the neighborhood (census tract) level, based on 29 indicators that are organized into three categories: (1) hazard proximity; (2) health risk and exposure; and (3) social and health vulnerability.

Each indicator category receives a score ranging from 1 to 5, and the scores are combined to derive a final CI score that ranges from 3 to 15.

Maps of each of the three scored categories, as well as the total CI score, are shown in this profile. The maps are color-coded by impact level – the spectrum ranging from green (representing low-impact areas) to red (representing high-impact areas).

The EJSM presented in this profile is based upon the method outlined in James Sadd et al., “Playing it Safe: Assessing Cumulative Impact and Social Vulnerability through an Environmental Justice Screening Method in the South Coast Air Basin, California,” International Journal of Environmental Research and Public Health 8 (2011): 1441-1459. The analysis has been recently updated (by the same researchers) to include a more recent vintage of the data series presented there. “Playing it Safe” is publicly-available for download here: http://www.mdpi.com/1660-4601/8/5/1441.
Data and Methods

Measures of Diversity and Segregation

On pages 11 and 66-67, we refer to measures of racial/ethnic diversity (the “Diversity Score”) and several measures of residential segregation by race/ethnicity (the “Multi-Group Entropy Index,” the “Dissimilarity Index,” and the “Isolation Index”). While the common interpretation of these measures is included in the text of the profile, the data used to calculate them, and the sources of the specific formulas that were applied, are described below.

All of these measures are based on census-tract-level data for 1980, 1990, 2000, and 2010 from Geolytics. While the data originates from the decennial censuses of each year, an advantage of the Geolytics data we use is that (with the exception of 2000) it has been “re-shaped” to be expressed in 2000 census tracts boundaries, and so the underlying geography for our calculations is consistent over time; the census tract boundaries of the original decennial census data change with each release, which could potentially cause a change in the value of residential segregation indices even if no actual change in residential segregation occurred. In addition, while most all the racial/ethnic categories for which indices are calculated are consistent with all other analysis presented in this profile, there is one exception. Given limitations of the tract-level data released in the 1980 Census, Native Americans and combined with Asians and Pacific Islanders in that year. For this reason, we set 1990 as the base year (rather than 1980), but keep the 1980 data other analysis of residential segregation as this minor inconsistency in the data is not likely to affect the analysis.

The formulas for the Diversity Score and the Multi-Group Entropy Index were drawn from a 2004 report by John Iceland of the University of Maryland, *The Multigroup Entropy Index (Also Known as Theil’s H or the Information Theory Index)*, available at: http://www.census.gov/hhes/www/housing/housing_patterns/multigroup_entropy.pdf. In that report, the formula used to calculate the Diversity Score (referred to as the “entropy score” in the report), appears on page 7, while the formulas used to calculate the Multigroup Entropy Index (referred to as the “entropy index” in the report), appear on page 8.

The formulas for the other two measures of residential segregation, the Dissimilarity Index and the Isolation Index, are well established, and are made available by the U.S. Census Bureau at: http://www.census.gov/hhes/www/housing/housing_patterns/app_b.html.
Data and Methods

Food Desert Analysis

On pages 68-69, we chart and map the demographics of food deserts. While there are many ways to define a food desert or to measure access to food, we use the USDA’s definition. The U.S. Department of Agriculture’s (USDA’s) Healthy Foods Financing Initiative working group defines a food desert as a low-income census tract where a substantial number or share of residents have low access to a supermarket or large grocery store.

To qualify as a “low-income community,” a census tract must have either 1) a poverty rate of 20 percent or higher, OR 2) a median family income at or below 80 percent of the statewide or metropolitan area median family income (in the case of urban tracts, the “area median” income applied is the greater of the metropolitan area median and the state median; for rural tracts, the “area median” applied is always the state median).

To qualify as a “low-access community,” at least 500 people and/or at least 33 percent of a census tracts’ population must reside more than one mile from a supermarket or large grocery store (for rural census tracts, the distance is more than 10 miles).

The USDA’s data on population and income are derived from block-level data from the 2000 Census of Population and Housing, which is allocated to a 1-km square grid where it can be matched with data on food access from the Socioeconomic Data and Applications Center.

An inventory of supermarkets and large grocery stores (defined as having at least $2 million in annual sales and similar food departments as those found in a supermarket) was created by the USDA from a directory. The directory consisted of stores authorized to receive Supplemental Nutrition Assistance Program (SNAP) benefits, and was supplemented with data from Trade Dimensions TDLinx (a Nielsen company), a proprietary supermarket store listing – both for the year 2006.

The USDA has released a food desert locator (http://www.ers.usda.gov/data-products/food-desert-locator.aspx) that shows census tracts considered food deserts by the USDA.
Within the Civic Engagement section, charts on pages 73-75 detailing rates and hours of volunteerism, citizens’ level of confidence in institutions, and frequency of participation in local elections were drawn from the Corporation for National and Community Service’s Volunteering and Civic Life in America database (http://www.volunteeringinamerica.gov/data.cfm) for the San Diego – Carlsbad – San Marcos, CA Metro area.

The database utilizes Current Population Survey (CPS) data. The CPS is a monthly survey of approximately 60,000 households administered by the U.S. Census Bureau and Bureau of Labor Statistics. One of the survey’s primary functions is to obtain information on employment and unemployment among the nation’s civilian non-institutional population age 16 and over. The CPS also collects data on other demographic characteristics, such as civic engagement, volunteerism, fertility, and veteran status through supplementary monthly surveys.

The volunteer data is collected through a supplement to the September CPS. Volunteers are defined as persons 16 and older who did unpaid work (except for expenses) through or for an organization. The Volunteer Supplement gathers information on individual’s volunteer time, as well as volunteer activities and organization type.

Data on voting in local elections and confidence in institutions are collected in the November CPS as part of a series of newly-added questions around civic health. Local elections include non-state and non-federal elections, such as mayoral and school board elections. Data on confidence in institutions is gathered by type of institution (e.g., corporations, media and public schools). Other useful indicators in the civic health series include:

- Frequency of using the internet to express opinions about political or community issues
- Frequency of communicating with family and friends
- Trust of neighbors

Questions on volunteer activities and questions ask about respondents’ activities and views during the year prior to the survey. For example, the September 2011 Volunteer Supplement asks about volunteer activities occurring October 2010 to September 2011.

For more on the methodology, see: http://www.volunteeringinamerica.gov/about/technical.cfm
Data and Methods

Civic Engagement

On pages 75-77 we refer to the “voting eligible” population, also known as the Citizen Voting Age Population (CVAP), which is defined as the adult (ages 18 and over) citizen population. The CVAP data is a special tabulation of data collected through the 5-year American Community Survey (ACS) administered by the U.S. Census Bureau.

On page 76, we compare the race/ethnicity of the CVAP to the race/ethnicity of the (1) youth and (2) overall population. Both populations have a greater share of people of color than the CVAP. In particular, the underrepresentation of Latinos, many of whom are immigrants, suggests a role for naturalization in civic engagement efforts. In addition, the shifting demographics of the region demonstrate the need for increased voter engagement in communities of color.

To pinpoint the location of civic engagement opportunities around naturalization, we mapped legal permanent residents (LPRs) as a share of the C by Public Use Microdata Area (PUMA) on page 77. PUMAs are a sub-county Census geography containing approximately 100,000 people, and the lowest geography at which the data is available. For more on the benefits of naturalization, see “Citizen Gain: The Economic Benefits of Naturalization for Immigrants and the Economy” at: http://csii.usc.edu/documents/citizen_gain_web.pdf

As seen on page 75, we also utilized the CVAP to calculate voter turnout as a share of the eligible population in the 2008 Presidential Election. To do this, we divided the 2008 Presidential Election voter count by the 2007-2011 CVAP. We chose to use the 2008 voter count as opposed to the 2012 count because the time period reflected in the CVAP data (2007-2011) better aligns with the 2008 election year data. For comparison purposes, we calculated the 2012 turnout figures using the 2007-2011 CVAP data and found that the turnout rates for 2012 (60 percent) were similar to the 2008 figures (62 percent).

Please note: Turnout rate statistics often refer to the voter count as a share of those registered to vote. The measure utilized here is turnout as a share of the voting eligible population—and includes those who meet the age and citizenship requirements for voting, but who are not necessarily registered to vote.

The 2008 and 2012 Presidential Election data was purchased from David Leip’s Atlas of U.S. Presidential Elections. For more, see: http://www.uselectionatlas.org/.
For more, visit us at:
http://dornsife.usc.edu/pere
http://csii.usc.edu/

This grant was made possible by The San Diego Foundation
Malin Burnham Center for Civic Engagement.