Differentiation

Techniques

- rules: sum, product, quotient, chain, constant, coefficient
- implicit differentiation: differentiate y with the same rules as if it were an x but remember to multiply by the “derivative of the inside” which is $\frac{dy}{dx}$
- logarithmic differentiation: take ln of both sides use rules of logs to rewrite the right side differentiate recalling that the derivative of $\ln(f(x))$ is $\frac{f'(x)}{f(x)}$ solve for $f'(x)$ and replace $f(x)$ with its proper expression
- partial derivatives: derivatives for two variable functions use the same rules as single-variable functions because we always differentiate with respect to one variable at a time and treat the other as a constant

Applications

- slope of tangent line to a curve (historically this is how derivatives were discovered/invented)
- approximation by increments: $f(x) - f(x_0) \approx f'(x_0)(x - x_0)$
- marginal cost (or marginal profit, etc.)
- related rates (uses implicit diff)
- applied optimization (see optimization)
- optimization and graphing: critical points ($f'(cp) = 0$ or undefined) intervals of incr/decr (f' is $+/-$, resp.) concavity (f'' is $+/-$ $\Rightarrow f$ is CU/CD) inflection points (f'' changes sign and f must be defined at inflection points) relative max/min (see derivative tests)
- 1st derivative test: cp where f' changes from $+$ to $-$ (resp. - to $+$) is max (resp. min) as long as f is defined at said cp
- 2nd derivative test: cp where f'' is negative (resp. positive) is a max (resp. min) as long as f is defined at said cp
- global (absolute) max/min: on an open interval a local max/min is a global max/min if it is the only cp; on a closed interval look at values of f at critical points and endpoints to determine the global max (largest) and min (smallest)
- vert./horizontal asymptote (see limits) in higher dimensions, critical points make both f_x and f_y zero; classify cp by looking at $D(cp) = f_{xx}(cp)f_{yy}(cp) - f_{xy}(cp)^2$; if $D(cp) < 0$, cp is a saddle point; if $D(cp) > 0$ then cp is a max (resp. min) if $f_{xx}(cp) < 0$ (resp. > 0)
Integration

Techniques

• similar sum and coefficient rules as derivative but different product and chain rules

• indefinite integrals must have a “+C”

• FTOC: If \(F' = f \), then \(\int_a^b f(x) \, dx = F(b) - F(a) \)

• substitution
 choose \(u \) and find \(du \)
 substitute the \(du \) and write everything else in terms of \(u \)
 if definite integral, change the limits to be with respect to \(u \)
 if indefinite integral, be sure to put your answer back in terms of the original variable

• integration by parts
 choose \(u \) and let everything else be \(dv \) (\(u \) will be \(\ln x \) or \(x^n \) usually)
 differentiate \(u \) to get \(du \)
 integrate \(dv \) to get \(v \)
 plug into the formula \(uv - \int v \, du \) and finish the computation

• double integrals
 make sure inside limits of integration are with respect to inside variable
 integrate the inside integral using one variable rules by treating the other variable as a constant
 evaluate and simplify the integrand
 you should be left with an integral in one variable
 solve normally
 double integrals may require techniques like substitution

Applications

• find the area under the curve (historically this is how integrals were discovered/invented)

• initial value problem (given a rate, integrate it; then use initial value to determine what “+C” is)

• net change (definite integral of a rate)

• area between curves (integrate the quantity (largest function minus smallest function); set functions equal to find limits of integration, if necessary)

• average value (area under curve times \(\frac{1}{b-a} \))

• volume under the surface (double integral)
Limits

Techniques

- at a point:
 plug in the point
 \(L \Rightarrow L \)
 \(\frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty \Rightarrow \text{factor or rationalize} \)
 \(\frac{L}{0} \Rightarrow \text{type of infinity, plug in nearby point to determine sign} \)

- at \(\pm \infty \):
 locate largest exponent
 in the denominator \(\Rightarrow 0 \)
 in the numerator \(\Rightarrow \text{type of } \infty \), determine sign by looking at largest terms in numerator and denominator
 same power in both \(\Rightarrow \text{ratio of leading coefficients} \)

- recall the behavior of \(e^x \) and \(\ln x \):
 \(\lim_{x \to -\infty} e^x = 0, \lim_{x \to \infty} e^x = +\infty \)
 \(\lim_{x \to 0^+} \ln x = -\infty, \lim_{x \to \infty} \ln x = +\infty \)

Applications

- continuity: \(\lim_{x \to a} f(x) \) exists and equals \(f(a) \)
- definition of the derivative: \(\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \)
- vertical asymptotes: determine point where the limit has the form \(\frac{L}{0} \)
- horizontal asymptotes: occur if \(\lim_{x \to -\infty} f(x) \) or \(\lim_{x \to \infty} f(x) \) is finite

Miscellaneous

Techniques

- profit, revenue, cost, average cost
- \(Pe^{rt} \)